File size: 5,448 Bytes
e8bb21f
4b9bbd9
35da143
6603185
73d3ba2
6603185
 
 
 
 
e8bb21f
d9c32c5
34fff7a
d9c32c5
 
 
 
5558c42
 
 
 
e09c2ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c32c5
 
e8bb21f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9c32c5
4b9bbd9
e8bb21f
 
 
 
 
 
 
 
 
 
73d3ba2
34fff7a
 
 
1e2ed35
e8bb21f
73d3ba2
1e2ed35
 
 
e8bb21f
 
1e2ed35
 
 
e8bb21f
 
1e2ed35
 
e8bb21f
 
 
 
 
1e2ed35
e8bb21f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from huggingface_hub import InferenceClient
import gradio as gr

css = '''
.gradio-container{max-width: 690px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")


mood_prompts = {
    "Fun": "Respond in a light-hearted, playful manner.",
    "Serious": "Respond in a thoughtful, serious tone.",
    "Professional": "Respond in a formal, professional manner.",
    "Upset": "Respond in a slightly irritated, upset tone.",
    "Empathetic": "Respond in a warm and understanding tone.",
    "Optimistic": "Respond in a positive, hopeful manner.",
    "Sarcastic": "Respond with a hint of sarcasm.",
    "Motivational": "Respond with encouragement and motivation.",
    "Curious": "Respond with a sense of wonder and curiosity.",
    "Humorous": "Respond with a touch of humor.",
    "Cautious": "Respond with careful consideration and caution.",
    "Assertive": "Respond with confidence and assertiveness.",
    "Friendly": "Respond in a warm and friendly manner.",
    "Romantic": "Respond with affection and romance.",
    "Nostalgic": "Respond with a sense of longing for the past.",
    "Grateful": "Respond with gratitude and appreciation.",
    "Inspirational": "Respond with inspiration and positivity.",
    "Casual": "Respond in a relaxed and informal tone.",
    "Formal": "Respond with a high level of formality.",
    "Pessimistic": "Respond with a focus on potential negatives.",
    "Excited": "Respond with enthusiasm and excitement.",
    "Melancholic": "Respond with a sense of sadness or longing.",
    "Confident": "Respond with self-assurance and confidence.",
    "Suspicious": "Respond with caution and doubt.",
    "Reflective": "Respond with deep thought and introspection.",
    "Joyful": "Respond with happiness and joy.",
    "Mysterious": "Respond with an air of mystery and intrigue.",
    "Aggressive": "Respond with force and intensity.",
    "Calm": "Respond with a sense of peace and tranquility.",
    "Gloomy": "Respond with a sense of sadness or pessimism.",
    "Encouraging": "Respond with words of support and encouragement.",
    "Sympathetic": "Respond with understanding and compassion.",
    "Disappointed": "Respond with a tone of disappointment.",
    "Proud": "Respond with a sense of pride and accomplishment.",
    "Playful": "Respond in a fun and playful manner.",
    "Inquisitive": "Respond with curiosity and interest.",
    "Supportive": "Respond with reassurance and support.",
    "Reluctant": "Respond with hesitation and reluctance.",
    "Confused": "Respond with uncertainty and confusion.",
    "Energetic": "Respond with high energy and enthusiasm.",
    "Relaxed": "Respond with a calm and laid-back tone.",
    "Grumpy": "Respond with a touch of irritation.",
    "Hopeful": "Respond with a sense of hope and optimism.",
    "Indifferent": "Respond with a lack of strong emotion.",
    "Surprised": "Respond with shock and astonishment.",
    "Tense": "Respond with a sense of urgency or anxiety.",
    "Enthusiastic": "Respond with eagerness and excitement.",
    "Worried": "Respond with concern and apprehension."
}

def format_prompt(message, history, system_prompt=None, mood=None):
    prompt = "<s>"
    if mood:
        mood_description = mood_prompts.get(mood, "")
        prompt += f"[SYS] {mood_description} [/SYS] "
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    if system_prompt:
        prompt += f"[SYS] {system_prompt} [/SYS]"
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(
    prompt, history, system_prompt=None, mood=None, temperature=0.2, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history, system_prompt, mood)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

def gradio_interface():
    with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
        # Initialize state for history
        history = gr.State([])
        
        # Row for mood selection
        with gr.Row():
            mood = gr.Radio(choices=list(mood_prompts.keys()), value="Professional", label="Select Mood")
        
        # Row for system prompt and user prompt
        with gr.Row():
            system_prompt = gr.Textbox(placeholder="System prompt (optional)", lines=1)
            prompt = gr.Textbox(placeholder="Enter your message", lines=2)
        
        # Row for generate button and output
        with gr.Row():
            generate_btn = gr.Button("Generate")
            output = gr.Chatbot()

        # Connect button click to generate function
        generate_btn.click(
            generate,
            inputs=[prompt, history, system_prompt, mood],
            outputs=[output]
        )
        
    demo.queue().launch(show_api=False)

gradio_interface()