prithivMLmods commited on
Commit
4061b41
1 Parent(s): 919cb42

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -33
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import spaces
3
  import numpy as np
4
  import random
5
- from diffusers import DiffusionPipeline, AutoencoderTiny
6
  import torch
7
  from PIL import Image
8
 
@@ -10,15 +10,8 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
10
  model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
11
 
12
  torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
13
-
14
- # Load Tiny Autoencoder and optimize its decoder layers with torch.compile
15
- taesd3 = (
16
- AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16)
17
- .half()
18
- .eval()
19
- .requires_grad_(False)
20
- .to(device)
21
- )
22
  taesd3.decoder.layers = torch.compile(
23
  taesd3.decoder.layers,
24
  fullgraph=True,
@@ -26,12 +19,16 @@ taesd3.decoder.layers = torch.compile(
26
  mode="max-autotune-no-cudagraphs",
27
  )
28
 
29
- # Load main Stable Diffusion pipeline with Tiny Autoencoder
30
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, vae=taesd3).to(device)
 
 
 
 
 
31
 
32
- pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors")
33
- trigger_word = "hyper realistic"
34
- pipe.fuse_lora(lora_scale=1.0)
35
 
36
  MAX_SEED = np.iinfo(np.int32).max
37
  MAX_IMAGE_SIZE = 1024
@@ -221,29 +218,14 @@ with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
221
  value=4,
222
  )
223
 
224
- gr.Examples(examples=examples,
225
- inputs=[prompt],
226
- outputs=[result, seed],
227
- fn=infer,
228
- cache_examples=False)
229
 
230
  gr.on(
231
  triggers=[run_button.click, prompt.submit],
232
  fn=infer,
233
- inputs=[
234
- prompt,
235
- negative_prompt,
236
- seed,
237
- randomize_seed,
238
- width,
239
- height,
240
- guidance_scale,
241
- num_inference_steps,
242
- style_selection,
243
- grid_size_selection,
244
- ],
245
  outputs=[result, seed],
246
  )
247
 
248
  if __name__ == "__main__":
249
- demo.launch()
 
2
  import spaces
3
  import numpy as np
4
  import random
5
+ from diffusers import DiffusionPipeline, AutoencoderTiny, StableDiffusion3Pipeline, SD3Transformer2DModel, FlashFlowMatchEulerDiscreteScheduler
6
  import torch
7
  from PIL import Image
8
 
 
10
  model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
11
 
12
  torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
13
+ # Load Tiny Autoencoder
14
+ taesd3 = AutoencoderTiny.from_pretrained("madebyollin/taesd3", torch_dtype=torch.float16).to(device)
 
 
 
 
 
 
 
15
  taesd3.decoder.layers = torch.compile(
16
  taesd3.decoder.layers,
17
  fullgraph=True,
 
19
  mode="max-autotune-no-cudagraphs",
20
  )
21
 
22
+ # Load main Stable Diffusion pipeline
23
+ pipe = StableDiffusion3Pipeline.from_pretrained(
24
+ model_path,
25
+ transformer=SD3Transformer2DModel.from_pretrained(model_path, torch_dtype=torch.float16),
26
+ torch_dtype=torch_dtype,
27
+ vae=taesd3,
28
+ ).to(device)
29
 
30
+ pipe.scheduler = FlashFlowMatchEulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
31
+ pipe.set_progress_bar_config(disable=True)
 
32
 
33
  MAX_SEED = np.iinfo(np.int32).max
34
  MAX_IMAGE_SIZE = 1024
 
218
  value=4,
219
  )
220
 
221
+ gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
 
 
 
 
222
 
223
  gr.on(
224
  triggers=[run_button.click, prompt.submit],
225
  fn=infer,
226
+ inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, style_selection, grid_size_selection],
 
 
 
 
 
 
 
 
 
 
 
227
  outputs=[result, seed],
228
  )
229
 
230
  if __name__ == "__main__":
231
+ demo.launch()