prithivMLmods commited on
Commit
c9c6564
1 Parent(s): 7a5a9f7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -12
app.py CHANGED
@@ -6,23 +6,18 @@ from diffusers import DiffusionPipeline
6
  import torch
7
  from PIL import Image
8
 
9
- # Device configuration
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
12
 
13
- # Set data type based on device availability
14
  torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
15
 
16
- # Load the pipeline
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
  pipe = pipe.to(device)
19
 
20
- # Load LoRA weights
21
  pipe.load_lora_weights("prithivMLmods/SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors")
22
  trigger_word = "hyper realistic" # Specify trigger word for LoRA
23
  pipe.fuse_lora(lora_scale=1.0)
24
 
25
- # Constants
26
  MAX_SEED = np.iinfo(np.int32).max
27
  MAX_IMAGE_SIZE = 1024
28
 
@@ -71,12 +66,11 @@ def infer(
71
  width=1024,
72
  height=1024,
73
  guidance_scale=7.5,
74
- num_inference_steps=4,
75
  style="Style Zero",
76
  grid_size="1x1",
77
  progress=gr.Progress(track_tqdm=True),
78
  ):
79
- # Apply selected style
80
  selected_style = next(s for s in style_list if s["name"] == style)
81
  styled_prompt = selected_style["prompt"].format(prompt=prompt)
82
  styled_negative_prompt = selected_style["negative_prompt"]
@@ -86,11 +80,9 @@ def infer(
86
 
87
  generator = torch.Generator().manual_seed(seed)
88
 
89
- # Get grid size
90
  grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
91
  num_images = grid_size_x * grid_size_y
92
 
93
- # Generate multiple images
94
  options = {
95
  "prompt": styled_prompt,
96
  "negative_prompt": styled_negative_prompt,
@@ -105,10 +97,8 @@ def infer(
105
  torch.cuda.empty_cache() # Clear GPU memory
106
  result = pipe(**options)
107
 
108
- # Create grid image
109
  grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
110
 
111
- # Paste images into the grid
112
  for i, img in enumerate(result.images[:num_images]):
113
  grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
114
 
@@ -213,7 +203,7 @@ with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
213
  minimum=1,
214
  maximum=50,
215
  step=1,
216
- value=4,
217
  )
218
 
219
  gr.Examples(examples=examples,
 
6
  import torch
7
  from PIL import Image
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
  model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
11
 
 
12
  torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
13
 
 
14
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
15
  pipe = pipe.to(device)
16
 
 
17
  pipe.load_lora_weights("prithivMLmods/SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors")
18
  trigger_word = "hyper realistic" # Specify trigger word for LoRA
19
  pipe.fuse_lora(lora_scale=1.0)
20
 
 
21
  MAX_SEED = np.iinfo(np.int32).max
22
  MAX_IMAGE_SIZE = 1024
23
 
 
66
  width=1024,
67
  height=1024,
68
  guidance_scale=7.5,
69
+ num_inference_steps=8,
70
  style="Style Zero",
71
  grid_size="1x1",
72
  progress=gr.Progress(track_tqdm=True),
73
  ):
 
74
  selected_style = next(s for s in style_list if s["name"] == style)
75
  styled_prompt = selected_style["prompt"].format(prompt=prompt)
76
  styled_negative_prompt = selected_style["negative_prompt"]
 
80
 
81
  generator = torch.Generator().manual_seed(seed)
82
 
 
83
  grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
84
  num_images = grid_size_x * grid_size_y
85
 
 
86
  options = {
87
  "prompt": styled_prompt,
88
  "negative_prompt": styled_negative_prompt,
 
97
  torch.cuda.empty_cache() # Clear GPU memory
98
  result = pipe(**options)
99
 
 
100
  grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
101
 
 
102
  for i, img in enumerate(result.images[:num_images]):
103
  grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
104
 
 
203
  minimum=1,
204
  maximum=50,
205
  step=1,
206
+ value=8,
207
  )
208
 
209
  gr.Examples(examples=examples,