File size: 9,984 Bytes
b9c00f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05202af
b9c00f8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import pickle
import tensorflow as tf
import pandas as pd
import numpy as np


# CONTANTS
MAX_LENGTH = 40
VOCABULARY_SIZE = 10000
BATCH_SIZE = 32
BUFFER_SIZE = 1000
EMBEDDING_DIM = 512
UNITS = 512


# LOADING DATA
vocab = pickle.load(open('saved_models/vocab.file', 'rb'))

tokenizer = tf.keras.layers.TextVectorization(
    max_tokens=VOCABULARY_SIZE,
    standardize=None,
    output_sequence_length=MAX_LENGTH,
    vocabulary=vocab
    )

idx2word = tf.keras.layers.StringLookup(
    mask_token="",
    vocabulary=tokenizer.get_vocabulary(),
    invert=True)


# MODEL
def CNN_Encoder():
    inception_v3 = tf.keras.applications.InceptionV3(
        include_top=False,
        weights='imagenet'
    )
    inception_v3.trainable = False

    output = inception_v3.output
    output = tf.keras.layers.Reshape(
        (-1, output.shape[-1]))(output)

    cnn_model = tf.keras.models.Model(inception_v3.input, output)
    return cnn_model


class TransformerEncoderLayer(tf.keras.layers.Layer):

    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.layer_norm_1 = tf.keras.layers.LayerNormalization()
        self.layer_norm_2 = tf.keras.layers.LayerNormalization()
        self.attention = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim)
        self.dense = tf.keras.layers.Dense(embed_dim, activation="relu")
    

    def call(self, x, training):
        x = self.layer_norm_1(x)
        x = self.dense(x)

        attn_output = self.attention(
            query=x,
            value=x,
            key=x,
            attention_mask=None,
            training=training
        )

        x = self.layer_norm_2(x + attn_output)
        return x


class Embeddings(tf.keras.layers.Layer):

    def __init__(self, vocab_size, embed_dim, max_len):
        super().__init__()
        self.token_embeddings = tf.keras.layers.Embedding(
            vocab_size, embed_dim)
        self.position_embeddings = tf.keras.layers.Embedding(
            max_len, embed_dim, input_shape=(None, max_len))
    

    def call(self, input_ids):
        length = tf.shape(input_ids)[-1]
        position_ids = tf.range(start=0, limit=length, delta=1)
        position_ids = tf.expand_dims(position_ids, axis=0)

        token_embeddings = self.token_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)

        return token_embeddings + position_embeddings


class TransformerDecoderLayer(tf.keras.layers.Layer):

    def __init__(self, embed_dim, units, num_heads):
        super().__init__()
        self.embedding = Embeddings(
            tokenizer.vocabulary_size(), embed_dim, MAX_LENGTH)

        self.attention_1 = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.attention_2 = tf.keras.layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )

        self.layernorm_1 = tf.keras.layers.LayerNormalization()
        self.layernorm_2 = tf.keras.layers.LayerNormalization()
        self.layernorm_3 = tf.keras.layers.LayerNormalization()

        self.ffn_layer_1 = tf.keras.layers.Dense(units, activation="relu")
        self.ffn_layer_2 = tf.keras.layers.Dense(embed_dim)

        self.out = tf.keras.layers.Dense(tokenizer.vocabulary_size(), activation="softmax")

        self.dropout_1 = tf.keras.layers.Dropout(0.3)
        self.dropout_2 = tf.keras.layers.Dropout(0.5)
    

    def call(self, input_ids, encoder_output, training, mask=None):
        embeddings = self.embedding(input_ids)

        combined_mask = None
        padding_mask = None
        
        if mask is not None:
            causal_mask = self.get_causal_attention_mask(embeddings)
            padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
            combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
            combined_mask = tf.minimum(combined_mask, causal_mask)

        attn_output_1 = self.attention_1(
            query=embeddings,
            value=embeddings,
            key=embeddings,
            attention_mask=combined_mask,
            training=training
        )

        out_1 = self.layernorm_1(embeddings + attn_output_1)

        attn_output_2 = self.attention_2(
            query=out_1,
            value=encoder_output,
            key=encoder_output,
            attention_mask=padding_mask,
            training=training
        )

        out_2 = self.layernorm_2(out_1 + attn_output_2)

        ffn_out = self.ffn_layer_1(out_2)
        ffn_out = self.dropout_1(ffn_out, training=training)
        ffn_out = self.ffn_layer_2(ffn_out)

        ffn_out = self.layernorm_3(ffn_out + out_2)
        ffn_out = self.dropout_2(ffn_out, training=training)
        preds = self.out(ffn_out)
        return preds


    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
            axis=0
        )
        return tf.tile(mask, mult)


class ImageCaptioningModel(tf.keras.Model):

    def __init__(self, cnn_model, encoder, decoder, image_aug=None):
        super().__init__()
        self.cnn_model = cnn_model
        self.encoder = encoder
        self.decoder = decoder
        self.image_aug = image_aug
        self.loss_tracker = tf.keras.metrics.Mean(name="loss")
        self.acc_tracker = tf.keras.metrics.Mean(name="accuracy")


    def calculate_loss(self, y_true, y_pred, mask):
        loss = self.loss(y_true, y_pred)
        mask = tf.cast(mask, dtype=loss.dtype)
        loss *= mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)


    def calculate_accuracy(self, y_true, y_pred, mask):
        accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
        accuracy = tf.math.logical_and(mask, accuracy)
        accuracy = tf.cast(accuracy, dtype=tf.float32)
        mask = tf.cast(mask, dtype=tf.float32)
        return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)
    

    def compute_loss_and_acc(self, img_embed, captions, training=True):
        encoder_output = self.encoder(img_embed, training=True)
        y_input = captions[:, :-1]
        y_true = captions[:, 1:]
        mask = (y_true != 0)
        y_pred = self.decoder(
            y_input, encoder_output, training=True, mask=mask
        )
        loss = self.calculate_loss(y_true, y_pred, mask)
        acc = self.calculate_accuracy(y_true, y_pred, mask)
        return loss, acc

    
    def train_step(self, batch):
        imgs, captions = batch

        if self.image_aug:
            imgs = self.image_aug(imgs)
        
        img_embed = self.cnn_model(imgs)

        with tf.GradientTape() as tape:
            loss, acc = self.compute_loss_and_acc(
                img_embed, captions
            )
    
        train_vars = (
            self.encoder.trainable_variables + self.decoder.trainable_variables
        )
        grads = tape.gradient(loss, train_vars)
        self.optimizer.apply_gradients(zip(grads, train_vars))
        self.loss_tracker.update_state(loss)
        self.acc_tracker.update_state(acc)

        return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}
    

    def test_step(self, batch):
        imgs, captions = batch

        img_embed = self.cnn_model(imgs)

        loss, acc = self.compute_loss_and_acc(
            img_embed, captions, training=False
        )

        self.loss_tracker.update_state(loss)
        self.acc_tracker.update_state(acc)

        return {"loss": self.loss_tracker.result(), "acc": self.acc_tracker.result()}

    @property
    def metrics(self):
        return [self.loss_tracker, self.acc_tracker]


def load_image_from_path(img_path):
    img = tf.io.read_file(img_path)
    img = tf.io.decode_jpeg(img, channels=3)
    img = tf.keras.layers.Resizing(299, 299)(img)
    img = img / 255.
    return img


def generate_caption(img, caption_model):
    if isinstance(img, str):
        img = load_image_from_path(img)
    
    if isinstance(img, np.ndarray):
        img = tf.convert_to_tensor(img)
    
    img = tf.expand_dims(img, axis=0)
    img_embed = caption_model.cnn_model(img)
    img_encoded = caption_model.encoder(img_embed, training=False)

    y_inp = '[start]'
    for i in range(MAX_LENGTH-1):
        tokenized = tokenizer([y_inp])[:, :-1]
        mask = tf.cast(tokenized != 0, tf.int32)
        pred = caption_model.decoder(
            tokenized, img_encoded, training=False, mask=mask)
        
        pred_idx = np.argmax(pred[0, i, :])
        pred_word = idx2word(pred_idx).numpy().decode('utf-8')
        if pred_word == '[end]':
            break
        
        y_inp += ' ' + pred_word
    
    y_inp = y_inp.replace('[start] ', '')
    return y_inp


def get_caption_model():
    encoder = TransformerEncoderLayer(EMBEDDING_DIM, 1)
    decoder = TransformerDecoderLayer(EMBEDDING_DIM, UNITS, 8)

    cnn_model = CNN_Encoder()

    caption_model = ImageCaptioningModel(
        cnn_model=cnn_model, encoder=encoder, decoder=decoder, image_aug=None,
    )

    def call_fn(batch, training):
        return batch

    caption_model.call = call_fn
    sample_x, sample_y = tf.random.normal((1, 299, 299, 3)), tf.zeros((1, 40))

    caption_model((sample_x, sample_y))

    sample_img_embed = caption_model.cnn_model(sample_x)
    sample_enc_out = caption_model.encoder(sample_img_embed, training=False)
    caption_model.decoder(sample_y, sample_enc_out, training=False)

    caption_model.load_weights(r'saved_models\image_captioning_transformer_weights_1.h5')

    return caption_model