Spaces:
Runtime error
Runtime error
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from PIL import Image
|
7 |
+
from tensorflow import keras
|
8 |
+
|
9 |
+
RESOLUTION = 224
|
10 |
+
|
11 |
+
crop_layer = keras.layers.CenterCrop(RESOLUTION, RESOLUTION)
|
12 |
+
norm_layer = keras.layers.Normalization(
|
13 |
+
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
|
14 |
+
variance=[(0.229 * 255) ** 2, (0.224 * 255) ** 2, (0.225 * 255) ** 2],
|
15 |
+
)
|
16 |
+
rescale_layer = keras.layers.Rescaling(scale=1.0 / 127.5, offset=-1)
|
17 |
+
|
18 |
+
|
19 |
+
def preprocess_image(orig_image: Image, model_type: str, size=RESOLUTION):
|
20 |
+
"""Image preprocessing utility."""
|
21 |
+
# Turn the image into a numpy array and add batch dim.
|
22 |
+
image = np.array(orig_image)
|
23 |
+
image = tf.expand_dims(image, 0)
|
24 |
+
|
25 |
+
# If model type is vit rescale the image to [-1, 1].
|
26 |
+
if model_type == "original_vit":
|
27 |
+
image = rescale_layer(image)
|
28 |
+
|
29 |
+
# Resize the image using bicubic interpolation.
|
30 |
+
resize_size = int((256 / 224) * size)
|
31 |
+
image = tf.image.resize(image, (resize_size, resize_size), method="bicubic")
|
32 |
+
|
33 |
+
# Crop the image.
|
34 |
+
preprocessed_image = crop_layer(image)
|
35 |
+
|
36 |
+
# If model type is DeiT or DINO normalize the image.
|
37 |
+
if model_type != "original_vit":
|
38 |
+
image = norm_layer(preprocessed_image)
|
39 |
+
|
40 |
+
return orig_image, preprocessed_image.numpy()
|
41 |
+
|
42 |
+
|
43 |
+
def attention_rollout_map(
|
44 |
+
image: Image, attention_score_dict: Dict[str, np.ndarray], model_type: str
|
45 |
+
):
|
46 |
+
"""Computes attention rollout results.
|
47 |
+
|
48 |
+
Reference:
|
49 |
+
https://arxiv.org/abs/2005.00928
|
50 |
+
|
51 |
+
Code copied and modified from here:
|
52 |
+
https://github.com/jeonsworld/ViT-pytorch/blob/main/visualize_attention_map.ipynb
|
53 |
+
"""
|
54 |
+
num_cls_tokens = 2 if "distilled" in model_type else 1
|
55 |
+
|
56 |
+
# Stack the individual attention matrices from individual transformer blocks.
|
57 |
+
attn_mat = tf.stack(
|
58 |
+
[attention_score_dict[k] for k in attention_score_dict.keys()]
|
59 |
+
)
|
60 |
+
attn_mat = tf.squeeze(attn_mat, axis=1)
|
61 |
+
|
62 |
+
# Average the attention weights across all heads.
|
63 |
+
attn_mat = tf.reduce_mean(attn_mat, axis=1)
|
64 |
+
|
65 |
+
# To account for residual connections, we add an identity matrix to the
|
66 |
+
# attention matrix and re-normalize the weights.
|
67 |
+
residual_attn = tf.eye(attn_mat.shape[1])
|
68 |
+
aug_attn_mat = attn_mat + residual_attn
|
69 |
+
aug_attn_mat = (
|
70 |
+
aug_attn_mat / tf.reduce_sum(aug_attn_mat, axis=-1)[..., None]
|
71 |
+
)
|
72 |
+
aug_attn_mat = aug_attn_mat.numpy()
|
73 |
+
|
74 |
+
# Recursively multiply the weight matrices.
|
75 |
+
joint_attentions = np.zeros(aug_attn_mat.shape)
|
76 |
+
joint_attentions[0] = aug_attn_mat[0]
|
77 |
+
|
78 |
+
for n in range(1, aug_attn_mat.shape[0]):
|
79 |
+
joint_attentions[n] = np.matmul(
|
80 |
+
aug_attn_mat[n], joint_attentions[n - 1]
|
81 |
+
)
|
82 |
+
|
83 |
+
# Attention from the output token to the input space.
|
84 |
+
v = joint_attentions[-1]
|
85 |
+
grid_size = int(np.sqrt(aug_attn_mat.shape[-1]))
|
86 |
+
mask = v[0, num_cls_tokens:].reshape(grid_size, grid_size)
|
87 |
+
mask = cv2.resize(mask / mask.max(), image.size)[..., np.newaxis]
|
88 |
+
result = (mask * image).astype("uint8")
|
89 |
+
return result
|