File size: 7,509 Bytes
5ddef29
 
 
 
 
 
 
 
d49e1e5
 
bab1e75
d49e1e5
5ddef29
 
 
 
 
 
 
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
4fff7a9
5ddef29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79e5823
5ddef29
 
 
 
 
 
3bebd7a
 
79e5823
 
5ddef29
 
 
 
 
 
d49e1e5
5ddef29
 
 
 
 
 
 
98511b0
 
 
 
a6c6039
810d812
98511b0
0a83ec1
98511b0
5ddef29
 
 
226c7c2
 
5cee47c
5ddef29
 
 
463ab11
5ddef29
 
 
3bebd7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ddef29
3bebd7a
5ddef29
5cee47c
3bebd7a
4c06fca
 
83ecce9
 
4c06fca
 
5cee47c
 
3bebd7a
5cee47c
3bebd7a
 
5ddef29
463ab11
a6c6039
5ddef29
79e5823
5ddef29
d49e1e5
bab1e75
 
 
 
 
 
d245bfd
bab1e75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d245bfd
d49e1e5
 
 
d245bfd
d49e1e5
bab1e75
d49e1e5
d245bfd
d49e1e5
 
f507805
5ddef29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import numpy as np
import gradio as gr
import requests
import time
import json
import base64
import os
from io import BytesIO
import PIL
from PIL.ExifTags import TAGS
import html


class Prodia:
    def __init__(self, api_key, base=None):
        self.base = base or "https://api.prodia.com/v1"
        self.headers = {
            "X-Prodia-Key": api_key
        }
    
    def generate(self, params):
        response = self._post(f"{self.base}/sd/generate", params)
        return response.json()
    
    def transform(self, params):
        response = self._post(f"{self.base}/sd/transform", params)
        return response.json()
    
    def controlnet(self, params):
        response = self._post(f"{self.base}/sd/controlnet", params)
        return response.json()
    
    def get_job(self, job_id):
        response = self._get(f"{self.base}/job/{job_id}")
        return response.json()

    def wait(self, job):
        job_result = job

        while job_result['status'] not in ['succeeded', 'failed']:
            time.sleep(0.25)
            job_result = self.get_job(job['job'])

        return job_result

    def list_models(self):
        response = self._get(f"{self.base}/models/list")
        return response.json()

    def _post(self, url, params):
        headers = {
            **self.headers,
            "Content-Type": "application/json"
        }
        response = requests.post(url, headers=headers, data=json.dumps(params))

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response

    def _get(self, url):
        response = requests.get(url, headers=self.headers)

        if response.status_code != 200:
            raise Exception(f"Bad Prodia Response: {response.status_code}")

        return response


def image_to_base64(image_path):
    # Open the image with PIL
    with Image.open(image_path) as image:
        # Convert the image to bytes
        buffered = BytesIO()
        image.save(buffered, format="PNG")  # You can change format to PNG if needed
        
        # Encode the bytes to base64
        img_str = base64.b64encode(buffered.getvalue())

    return img_str.decode('utf-8')  # Convert bytes to string



prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))

def flip_text(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
    result = prodia_client.generate({
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "model": model,
        "steps": steps,
        "sampler": sampler,
        "cfg_scale": cfg_scale,
        "width": width,
        "height": height,
        "seed": seed
    })

    job = prodia_client.wait(result)

    return job["imageUrl"]


css = """
#generate {
    height: 100%;
}
"""

with gr.Blocks(css=css) as demo:


    with gr.Row():
        with gr.Column(scale=6):
            model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
  
        with gr.Column(scale=1):
            gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br> For more features and faster gen times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide)")

    with gr.Tab("txt2img"):
        with gr.Row():
            with gr.Column(scale=6, min_width=600):
                prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
                negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
            with gr.Column():
                text_button = gr.Button("Generate", variant='primary', elem_id="generate")
                
        with gr.Row():
            with gr.Column(scale=3):
                with gr.Tab("Generation"):
                    with gr.Row():
                        with gr.Column(scale=1):
                            sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=[
                                "Euler",
                                "Euler a",
                                "LMS",
                                "Heun",
                                "DPM2",
                                "DPM2 a",
                                "DPM++ 2S a",
                                "DPM++ 2M",
                                "DPM++ SDE",
                                "DPM fast",
                                "DPM adaptive",
                                "LMS Karras",
                                "DPM2 Karras",
                                "DPM2 a Karras",
                                "DPM++ 2S a Karras",
                                "DPM++ 2M Karras",
                                "DPM++ SDE Karras",
                                "DDIM",
                                "PLMS",
                            ])
                            
                        with gr.Column(scale=1):
                            steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=30, value=25, step=1)

                    with gr.Row():
                        with gr.Column(scale=1):
                            width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
                            height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
                        
                        with gr.Column(scale=1):
                            batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
                            batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)

                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
                    seed = gr.Number(label="Seed", value=-1)

                
            with gr.Column(scale=2):
                image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")

        text_button.click(flip_text, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output)
    
    with gr.Tab("PNG Info"):
        def plaintext_to_html(text, classname=None):
            content = "<br>\n".join(html.escape(x) for x in text.split('\n'))

            return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"


        def get_exif_data(image):
            items = image.info

            info = ''
            for key, text in items.items():
                info += f"""
                <div>
                <p><b>{plaintext_to_html(str(key))}</b></p>
                <p>{plaintext_to_html(str(text))}</p>
                </div>
                """.strip()+"\n"

            if len(info) == 0:
                message = "Nothing found in the image."
                info = f"<div><p>{message}<p></div>"

            return info

        with gr.Row():
            with gr.Column():
                image_input = gr.Image(type="pil")
                
            with gr.Column():
                exif_output = gr.HTML(label="EXIF Data")

        image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)


demo.queue(concurrency_count=32)
demo.launch()