import logging import time from datetime import timedelta from typing import Dict, List import streamlit as st from llm_guard.input_scanners import get_scanner_by_name from llm_guard.input_scanners.anonymize import default_entity_types from llm_guard.input_scanners.code import SUPPORTED_LANGUAGES as SUPPORTED_CODE_LANGUAGES from llm_guard.input_scanners.gibberish import MatchType as GibberishMatchType from llm_guard.input_scanners.language import MatchType as LanguageMatchType from llm_guard.input_scanners.prompt_injection import MatchType as PromptInjectionMatchType from llm_guard.input_scanners.toxicity import MatchType as ToxicityMatchType from llm_guard.vault import Vault from streamlit_tags import st_tags logger = logging.getLogger("llm-guard-playground") def init_settings() -> (List, Dict): all_scanners = [ "Anonymize", "BanCode", "BanCompetitors", "BanSubstrings", "BanTopics", "Code", "Gibberish", "Language", "PromptInjection", "Regex", "Secrets", "Sentiment", "TokenLimit", "Toxicity", ] st_enabled_scanners = st.sidebar.multiselect( "Select scanners", options=all_scanners, default=all_scanners, help="The list can be found here: https://llm-guard.com/input_scanners/anonymize/", ) settings = {} if "Anonymize" in st_enabled_scanners: st_anon_expander = st.sidebar.expander( "Anonymize", expanded=False, ) with st_anon_expander: st_anon_entity_types = st_tags( label="Anonymize entities", text="Type and press enter", value=default_entity_types, suggestions=default_entity_types + ["DATE_TIME", "NRP", "LOCATION", "MEDICAL_LICENSE", "US_PASSPORT"], maxtags=30, key="anon_entity_types", ) st.caption( "Check all supported entities: https://llm-guard.com/input_scanners/anonymize/" ) st_anon_hidden_names = st_tags( label="Hidden names to be anonymized", text="Type and press enter", value=[], suggestions=[], maxtags=30, key="anon_hidden_names", ) st.caption("These names will be hidden e.g. [REDACTED_CUSTOM1].") st_anon_allowed_names = st_tags( label="Allowed names to ignore", text="Type and press enter", value=[], suggestions=[], maxtags=30, key="anon_allowed_names", ) st.caption("These names will be ignored even if flagged by the detector.") st_anon_preamble = st.text_input( "Preamble", value="Text to prepend to sanitized prompt: " ) st_anon_use_faker = st.checkbox( "Use Faker", value=False, help="Use Faker library to generate fake data", key="anon_use_faker", ) st_anon_threshold = st.slider( label="Threshold", value=0.0, min_value=0.0, max_value=1.0, step=0.1, key="anon_threshold", ) settings["Anonymize"] = { "entity_types": st_anon_entity_types, "hidden_names": st_anon_hidden_names, "allowed_names": st_anon_allowed_names, "preamble": st_anon_preamble, "use_faker": st_anon_use_faker, "threshold": st_anon_threshold, } if "BanCode" in st_enabled_scanners: st_bc_expander = st.sidebar.expander( "Ban Code", expanded=False, ) with st_bc_expander: st_bc_threshold = st.slider( label="Threshold", value=0.95, min_value=0.0, max_value=1.0, step=0.05, key="ban_code_threshold", ) settings["BanCode"] = { "threshold": st_bc_threshold, } if "BanCompetitors" in st_enabled_scanners: st_bc_expander = st.sidebar.expander( "Ban Competitors", expanded=False, ) with st_bc_expander: st_bc_competitors = st_tags( label="List of competitors", text="Type and press enter", value=["openai", "anthropic", "deepmind", "google"], suggestions=[], maxtags=30, key="bc_competitors", ) st_bc_threshold = st.slider( label="Threshold", value=0.5, min_value=0.0, max_value=1.0, step=0.05, key="ban_competitors_threshold", ) settings["BanCompetitors"] = { "competitors": st_bc_competitors, "threshold": st_bc_threshold, } if "BanSubstrings" in st_enabled_scanners: st_bs_expander = st.sidebar.expander( "Ban Substrings", expanded=False, ) with st_bs_expander: st_bs_substrings = st.text_area( "Enter substrings to ban (one per line)", value="test\nhello\nworld", height=200, ).split("\n") st_bs_match_type = st.selectbox( "Match type", ["str", "word"], index=0, key="bs_match_type" ) st_bs_case_sensitive = st.checkbox( "Case sensitive", value=False, key="bs_case_sensitive" ) st_bs_redact = st.checkbox("Redact", value=False, key="bs_redact") st_bs_contains_all = st.checkbox("Contains all", value=False, key="bs_contains_all") settings["BanSubstrings"] = { "substrings": st_bs_substrings, "match_type": st_bs_match_type, "case_sensitive": st_bs_case_sensitive, "redact": st_bs_redact, "contains_all": st_bs_contains_all, } if "BanTopics" in st_enabled_scanners: st_bt_expander = st.sidebar.expander( "Ban Topics", expanded=False, ) with st_bt_expander: st_bt_topics = st_tags( label="List of topics", text="Type and press enter", value=["violence"], suggestions=[], maxtags=30, key="bt_topics", ) st_bt_threshold = st.slider( label="Threshold", value=0.6, min_value=0.0, max_value=1.0, step=0.05, key="ban_topics_threshold", ) settings["BanTopics"] = { "topics": st_bt_topics, "threshold": st_bt_threshold, } if "Code" in st_enabled_scanners: st_cd_expander = st.sidebar.expander( "Code", expanded=False, ) with st_cd_expander: st_cd_languages = st.multiselect( "Programming languages", SUPPORTED_CODE_LANGUAGES, default=["Python"], ) st_cd_is_blocked = st.checkbox("Is blocked", value=False, key="code_is_blocked") settings["Code"] = { "languages": st_cd_languages, "is_blocked": st_cd_is_blocked, } if "Gibberish" in st_enabled_scanners: st_gib_expander = st.sidebar.expander( "Gibberish", expanded=False, ) with st_gib_expander: st_gib_threshold = st.slider( label="Threshold", value=0.7, min_value=0.0, max_value=1.0, step=0.1, key="gibberish_threshold", ) st_gib_match_type = st.selectbox( "Match type", [e.value for e in GibberishMatchType], index=1, key="gibberish_match_type", ) settings["Gibberish"] = { "threshold": st_gib_threshold, "match_type": st_gib_match_type, } if "Language" in st_enabled_scanners: st_lan_expander = st.sidebar.expander( "Language", expanded=False, ) with st_lan_expander: st_lan_valid_language = st.multiselect( "Languages", [ "ar", "bg", "de", "el", "en", "es", "fr", "hi", "it", "ja", "nl", "pl", "pt", "ru", "sw", "th", "tr", "ur", "vi", "zh", ], default=["en"], ) st_lan_match_type = st.selectbox( "Match type", [e.value for e in LanguageMatchType], index=1, key="language_match_type", ) settings["Language"] = { "valid_languages": st_lan_valid_language, "match_type": st_lan_match_type, } if "PromptInjection" in st_enabled_scanners: st_pi_expander = st.sidebar.expander( "Prompt Injection", expanded=False, ) with st_pi_expander: st_pi_threshold = st.slider( label="Threshold", value=0.75, min_value=0.0, max_value=1.0, step=0.05, key="prompt_injection_threshold", ) st_pi_match_type = st.selectbox( "Match type", [e.value for e in PromptInjectionMatchType], index=1, key="prompt_injection_match_type", ) settings["PromptInjection"] = { "threshold": st_pi_threshold, "match_type": st_pi_match_type, } if "Regex" in st_enabled_scanners: st_regex_expander = st.sidebar.expander( "Regex", expanded=False, ) with st_regex_expander: st_regex_patterns = st.text_area( "Enter patterns to ban (one per line)", value="Bearer [A-Za-z0-9-._~+/]+", height=200, ).split("\n") st_regex_is_blocked = st.checkbox("Is blocked", value=True, key="regex_is_blocked") st_regex_redact = st.checkbox( "Redact", value=False, help="Replace the matched bad patterns with [REDACTED]", key="regex_redact", ) settings["Regex"] = { "patterns": st_regex_patterns, "is_blocked": st_regex_is_blocked, "redact": st_regex_redact, } if "Secrets" in st_enabled_scanners: st_sec_expander = st.sidebar.expander( "Secrets", expanded=False, ) with st_sec_expander: st_sec_redact_mode = st.selectbox("Redact mode", ["all", "partial", "hash"]) settings["Secrets"] = { "redact_mode": st_sec_redact_mode, } if "Sentiment" in st_enabled_scanners: st_sent_expander = st.sidebar.expander( "Sentiment", expanded=False, ) with st_sent_expander: st_sent_threshold = st.slider( label="Threshold", value=-0.5, min_value=-1.0, max_value=1.0, step=0.1, key="sentiment_threshold", help="Negative values are negative sentiment, positive values are positive sentiment", ) settings["Sentiment"] = { "threshold": st_sent_threshold, } if "TokenLimit" in st_enabled_scanners: st_tl_expander = st.sidebar.expander( "Token Limit", expanded=False, ) with st_tl_expander: st_tl_limit = st.number_input( "Limit", value=4096, min_value=0, max_value=10000, step=10 ) st_tl_encoding_name = st.selectbox( "Encoding name", ["cl100k_base", "p50k_base", "r50k_base"], index=0, help="Read more: https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb", ) settings["TokenLimit"] = { "limit": st_tl_limit, "encoding_name": st_tl_encoding_name, } if "Toxicity" in st_enabled_scanners: st_tox_expander = st.sidebar.expander( "Toxicity", expanded=False, ) with st_tox_expander: st_tox_threshold = st.slider( label="Threshold", value=0.75, min_value=0.0, max_value=1.0, step=0.05, key="toxicity_threshold", ) st_tox_match_type = st.selectbox( "Match type", [e.value for e in ToxicityMatchType], index=1, key="toxicity_match_type", ) settings["Toxicity"] = { "threshold": st_tox_threshold, "match_type": st_tox_match_type, } return st_enabled_scanners, settings def get_scanner(scanner_name: str, vault: Vault, settings: Dict): logger.debug(f"Initializing {scanner_name} scanner") if scanner_name == "Anonymize": settings["vault"] = vault if scanner_name in [ "Anonymize", "BanCode", "BanTopics", "Code", "Gibberish", "PromptInjection", "Toxicity", ]: settings["use_onnx"] = True return get_scanner_by_name(scanner_name, settings) def scan( vault: Vault, enabled_scanners: List[str], settings: Dict, text: str, fail_fast: bool = False ) -> (str, List[Dict[str, any]]): sanitized_prompt = text results = [] status_text = "Scanning prompt..." if fail_fast: status_text = "Scanning prompt (fail fast mode)..." with st.status(status_text, expanded=True) as status: for scanner_name in enabled_scanners: st.write(f"{scanner_name} scanner...") scanner = get_scanner(scanner_name, vault, settings[scanner_name]) start_time = time.monotonic() sanitized_prompt, is_valid, risk_score = scanner.scan(sanitized_prompt) end_time = time.monotonic() results.append( { "scanner": scanner_name, "is_valid": is_valid, "risk_score": risk_score, "took_sec": round(timedelta(seconds=end_time - start_time).total_seconds(), 2), } ) if fail_fast and not is_valid: break status.update(label="Scanning complete", state="complete", expanded=False) return sanitized_prompt, results