Upload 2 files
Browse files- app.py +1018 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import io
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from matplotlib.ticker import PercentFormatter
|
7 |
+
import seaborn as sns
|
8 |
+
from sklearn.preprocessing import (
|
9 |
+
OneHotEncoder,
|
10 |
+
OrdinalEncoder,
|
11 |
+
StandardScaler,
|
12 |
+
MinMaxScaler,
|
13 |
+
)
|
14 |
+
from sklearn.model_selection import train_test_split
|
15 |
+
from imblearn.under_sampling import RandomUnderSampler
|
16 |
+
from imblearn.over_sampling import RandomOverSampler, SMOTE
|
17 |
+
from sklearn.linear_model import Ridge, Lasso, LogisticRegression
|
18 |
+
from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier
|
19 |
+
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
|
20 |
+
from sklearn.svm import SVR, SVC
|
21 |
+
from sklearn.naive_bayes import MultinomialNB
|
22 |
+
from xgboost import XGBRFRegressor, XGBRFClassifier
|
23 |
+
from lightgbm import LGBMRegressor, LGBMClassifier
|
24 |
+
from sklearn.metrics import (
|
25 |
+
mean_absolute_error,
|
26 |
+
mean_squared_error,
|
27 |
+
mean_squared_error,
|
28 |
+
r2_score,
|
29 |
+
)
|
30 |
+
from sklearn.metrics import (
|
31 |
+
accuracy_score,
|
32 |
+
f1_score,
|
33 |
+
roc_auc_score,
|
34 |
+
confusion_matrix,
|
35 |
+
)
|
36 |
+
import pickle
|
37 |
+
|
38 |
+
st.set_page_config(page_title="Tabular Data Analysis and Auto ML", page_icon="🤖")
|
39 |
+
sns.set_style("white")
|
40 |
+
sns.set_context("poster", font_scale=0.7)
|
41 |
+
palette = [
|
42 |
+
"#1d7874",
|
43 |
+
"#679289",
|
44 |
+
"#f4c095",
|
45 |
+
"#ee2e31",
|
46 |
+
"#ffb563",
|
47 |
+
"#918450",
|
48 |
+
"#f85e00",
|
49 |
+
"#a41623",
|
50 |
+
"#9a031e",
|
51 |
+
"#d6d6d6",
|
52 |
+
"#ffee32",
|
53 |
+
"#ffd100",
|
54 |
+
"#333533",
|
55 |
+
"#202020",
|
56 |
+
]
|
57 |
+
|
58 |
+
|
59 |
+
def main():
|
60 |
+
file = st.sidebar.file_uploader("Upload Your CSV File Here: ")
|
61 |
+
process = st.sidebar.button("Process")
|
62 |
+
option = st.sidebar.radio(
|
63 |
+
"Select an Option: ",
|
64 |
+
(
|
65 |
+
"Basic EDA",
|
66 |
+
"Univariate Analysis",
|
67 |
+
"Bivariate Analysis",
|
68 |
+
"Preprocess",
|
69 |
+
"Training and Evaluation",
|
70 |
+
),
|
71 |
+
)
|
72 |
+
placeholder = st.empty()
|
73 |
+
placeholder.markdown(
|
74 |
+
"<h1 style='text-align: center;'>Welcome to Tabular Data Analysis and Auto ML🤖</h1>",
|
75 |
+
unsafe_allow_html=True
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
if file is not None and process:
|
80 |
+
data = load_csv(file)
|
81 |
+
st.session_state["data"] = data
|
82 |
+
|
83 |
+
if "data" in st.session_state:
|
84 |
+
data = st.session_state["data"]
|
85 |
+
placeholder.empty()
|
86 |
+
|
87 |
+
if option == "Basic EDA":
|
88 |
+
st.markdown(
|
89 |
+
"<h1 style='text-align: center;'>Basic EDA</h1>", unsafe_allow_html=True
|
90 |
+
)
|
91 |
+
|
92 |
+
st.subheader("Data Overview")
|
93 |
+
st.write(data_overview(data))
|
94 |
+
st.write(duplicate(data))
|
95 |
+
st.dataframe(data.head())
|
96 |
+
|
97 |
+
st.subheader("Data Types and Unique Value Counts")
|
98 |
+
display_data_info(data)
|
99 |
+
|
100 |
+
st.subheader("Missing Data")
|
101 |
+
missing_data(data)
|
102 |
+
|
103 |
+
st.subheader("Value Counts")
|
104 |
+
value_counts(data)
|
105 |
+
|
106 |
+
st.subheader("Descriptive Statistics")
|
107 |
+
st.write(data.describe().T)
|
108 |
+
|
109 |
+
if option == "Univariate Analysis":
|
110 |
+
st.markdown(
|
111 |
+
"<h1 style='text-align: center;'>Univariate Analysis</h1>",
|
112 |
+
unsafe_allow_html=True,
|
113 |
+
)
|
114 |
+
plot = st.radio(
|
115 |
+
"Select a chart: ",
|
116 |
+
("Count Plot", "Pie Chart", "Histogram", "Violin Plot", "Scatter Plot"),
|
117 |
+
)
|
118 |
+
|
119 |
+
if plot == "Count Plot":
|
120 |
+
column = st.selectbox(
|
121 |
+
"Select a column", [""] + list(data.select_dtypes("O"))
|
122 |
+
)
|
123 |
+
if column:
|
124 |
+
countplot(data, column)
|
125 |
+
|
126 |
+
if plot == "Pie Chart":
|
127 |
+
column = st.selectbox(
|
128 |
+
"Select a column", [""] + list(data.select_dtypes("O"))
|
129 |
+
)
|
130 |
+
if column:
|
131 |
+
piechart(data, column)
|
132 |
+
|
133 |
+
if plot == "Histogram":
|
134 |
+
column = st.selectbox(
|
135 |
+
"Select a column",
|
136 |
+
[""] + list(data.select_dtypes(include=["int", "float"])),
|
137 |
+
)
|
138 |
+
if column:
|
139 |
+
histogram(data, column)
|
140 |
+
|
141 |
+
if plot == "Violin Plot":
|
142 |
+
column = st.selectbox(
|
143 |
+
"Select a column",
|
144 |
+
[""] + list(data.select_dtypes(include=["int", "float"])),
|
145 |
+
)
|
146 |
+
if column:
|
147 |
+
violinplot(data, column)
|
148 |
+
|
149 |
+
if plot == "Scatter Plot":
|
150 |
+
column = st.selectbox(
|
151 |
+
"Select a column",
|
152 |
+
[""] + list(data.select_dtypes(include=["int", "float"])),
|
153 |
+
)
|
154 |
+
if column:
|
155 |
+
scatterplot(data, column)
|
156 |
+
|
157 |
+
if option == "Bivariate Analysis":
|
158 |
+
st.markdown(
|
159 |
+
"<h1 style='text-align: center;'>Bivariate Analysis</h1>",
|
160 |
+
unsafe_allow_html=True,
|
161 |
+
)
|
162 |
+
plot = st.radio(
|
163 |
+
"Select a chart: ",
|
164 |
+
("Scatter Plot", "Bar Plot", "Box Plot", "Pareto Chart"),
|
165 |
+
)
|
166 |
+
|
167 |
+
if plot == "Scatter Plot":
|
168 |
+
columns = st.multiselect(
|
169 |
+
"Select two columns",
|
170 |
+
[""] + list(data.select_dtypes(include=["int", "float"])),
|
171 |
+
)
|
172 |
+
|
173 |
+
if columns:
|
174 |
+
biscatterplot(data, columns)
|
175 |
+
|
176 |
+
if plot == "Bar Plot":
|
177 |
+
columns = st.multiselect("Select two columns", list(data.columns))
|
178 |
+
|
179 |
+
if columns:
|
180 |
+
bibarplot(data, columns)
|
181 |
+
|
182 |
+
if plot == "Box Plot":
|
183 |
+
columns = st.multiselect("Select two columns", list(data.columns))
|
184 |
+
|
185 |
+
if columns:
|
186 |
+
biboxplot(data, columns)
|
187 |
+
|
188 |
+
if plot == "Pareto Chart":
|
189 |
+
column = st.selectbox(
|
190 |
+
"Select a columns",
|
191 |
+
[""] + list(data.select_dtypes(include="object")),
|
192 |
+
)
|
193 |
+
|
194 |
+
if column:
|
195 |
+
paretoplot(data, column)
|
196 |
+
|
197 |
+
if option == "Preprocess":
|
198 |
+
st.markdown(
|
199 |
+
"<h1 style='text-align: center;'>Data Preprocessing</h1>",
|
200 |
+
unsafe_allow_html=True,
|
201 |
+
)
|
202 |
+
|
203 |
+
operation = st.radio(
|
204 |
+
"Select preprocessing step: ",
|
205 |
+
(
|
206 |
+
"Drop Columns",
|
207 |
+
"Handling Missing Values",
|
208 |
+
"Encode Categorical Features",
|
209 |
+
),
|
210 |
+
)
|
211 |
+
|
212 |
+
if operation == "Drop Columns":
|
213 |
+
columns = st.multiselect("Select Columns to drop: ", (data.columns))
|
214 |
+
drop_columns = st.button("Drop Columns")
|
215 |
+
if drop_columns:
|
216 |
+
data.drop(columns, axis=1, inplace=True)
|
217 |
+
st.success("Dropped selected columns✅✅✅")
|
218 |
+
|
219 |
+
elif operation == "Handling Missing Values":
|
220 |
+
num_missing = st.selectbox(
|
221 |
+
"Select a Approach (Numerical columns only): ",
|
222 |
+
("", "Drop", "Backward Fill", "Forward Fill", "Mean", "Median"),
|
223 |
+
).lower()
|
224 |
+
|
225 |
+
cat_missing = st.selectbox(
|
226 |
+
"Select a Approach (Categorical columns only): ",
|
227 |
+
("", "Drop", "Most Frequent Values", "Replace with 'Unknown'"),
|
228 |
+
).lower()
|
229 |
+
hmv = st.button("Handle Missing Values")
|
230 |
+
|
231 |
+
if hmv:
|
232 |
+
if num_missing:
|
233 |
+
num_data = data.select_dtypes(include=["int64", "float64"])
|
234 |
+
|
235 |
+
if num_missing == "drop":
|
236 |
+
data = data.dropna(subset=num_data.columns)
|
237 |
+
|
238 |
+
elif num_missing in [
|
239 |
+
"mean",
|
240 |
+
"median",
|
241 |
+
"backward fill",
|
242 |
+
"forward fill",
|
243 |
+
]:
|
244 |
+
if num_missing == "mean":
|
245 |
+
fill_values = num_data.mean()
|
246 |
+
elif num_missing == "median":
|
247 |
+
fill_values = num_data.median()
|
248 |
+
elif num_missing == "backward fill":
|
249 |
+
fill_values = num_data.bfill()
|
250 |
+
elif num_missing == "forward fill":
|
251 |
+
fill_values = num_data.ffill()
|
252 |
+
|
253 |
+
data.fillna(value=fill_values, inplace=True)
|
254 |
+
|
255 |
+
st.success(
|
256 |
+
"Imputed missing values in numerical columns with selected approach."
|
257 |
+
)
|
258 |
+
|
259 |
+
if cat_missing:
|
260 |
+
cat_data = data.select_dtypes(exclude=["int", "float"])
|
261 |
+
|
262 |
+
if cat_missing == "drop":
|
263 |
+
data = data.dropna(subset=cat_data.columns)
|
264 |
+
|
265 |
+
elif cat_missing == "most frequent values":
|
266 |
+
mode_values = data[cat_data.columns].mode().iloc[0]
|
267 |
+
data[cat_data.columns] = data[cat_data.columns].fillna(
|
268 |
+
mode_values
|
269 |
+
)
|
270 |
+
|
271 |
+
elif cat_missing == "replace with 'unknown'":
|
272 |
+
data[cat_data.columns] = data[cat_data.columns].fillna(
|
273 |
+
"Unknown"
|
274 |
+
)
|
275 |
+
|
276 |
+
st.success(
|
277 |
+
"Imputed missing values in categorical columns with selected approach."
|
278 |
+
)
|
279 |
+
|
280 |
+
elif operation == "Encode Categorical Features":
|
281 |
+
oe_columns = st.multiselect(
|
282 |
+
"Choose Columns for Ordinal Encoding",
|
283 |
+
[""] + list(data.select_dtypes(include="object")),
|
284 |
+
)
|
285 |
+
st.info("Other columns will be One Hot Encoded.")
|
286 |
+
|
287 |
+
encode_columns = st.button("Encode Columns")
|
288 |
+
|
289 |
+
if encode_columns:
|
290 |
+
bool_columns = data.select_dtypes(include=bool).columns
|
291 |
+
data[bool_columns] = data[bool_columns].astype(int)
|
292 |
+
if oe_columns:
|
293 |
+
oe = OrdinalEncoder()
|
294 |
+
data[oe_columns] = oe.fit_transform(
|
295 |
+
data[oe_columns].astype("str")
|
296 |
+
)
|
297 |
+
|
298 |
+
try:
|
299 |
+
remaining_cat_cols = [
|
300 |
+
col
|
301 |
+
for col in data.select_dtypes(include="object")
|
302 |
+
if col not in oe_columns
|
303 |
+
]
|
304 |
+
except:
|
305 |
+
pass
|
306 |
+
|
307 |
+
if len(remaining_cat_cols) > 0:
|
308 |
+
data = pd.get_dummies(
|
309 |
+
data, columns=remaining_cat_cols, drop_first=False
|
310 |
+
)
|
311 |
+
bool_columns = data.select_dtypes(include=bool).columns
|
312 |
+
data[bool_columns] = data[bool_columns].astype(int)
|
313 |
+
|
314 |
+
st.success("Encoded categorical columns")
|
315 |
+
|
316 |
+
preprocessed_data_csv = data.to_csv(index=False)
|
317 |
+
|
318 |
+
# Create a StringIO object to handle the data
|
319 |
+
preprocessed_data_buffer = io.StringIO()
|
320 |
+
preprocessed_data_buffer.write(preprocessed_data_csv)
|
321 |
+
preprocessed_data_bytes = preprocessed_data_buffer.getvalue()
|
322 |
+
|
323 |
+
# Now you can add a download button for the preprocessed data
|
324 |
+
if st.download_button(
|
325 |
+
label="Download Preprocessed Data",
|
326 |
+
key="preprocessed_data",
|
327 |
+
on_click=None,
|
328 |
+
data=preprocessed_data_bytes.encode(),
|
329 |
+
file_name="preprocessed_data.csv",
|
330 |
+
mime="text/csv",
|
331 |
+
):
|
332 |
+
pass
|
333 |
+
|
334 |
+
|
335 |
+
if option == "Training and Evaluation":
|
336 |
+
st.markdown(
|
337 |
+
"<h1 style='text-align: center;'>Training and Evaluation</h1>",
|
338 |
+
unsafe_allow_html=True,
|
339 |
+
)
|
340 |
+
algo = st.selectbox("Choose Algorithm Type:", ("", "Regression", "Classification"))
|
341 |
+
|
342 |
+
if algo == "Regression":
|
343 |
+
target = st.selectbox("Chose Target Variable (Y): ", list(data.columns))
|
344 |
+
|
345 |
+
try:
|
346 |
+
X = data.drop(target, axis=1)
|
347 |
+
Y = data[target]
|
348 |
+
except Exception as e:
|
349 |
+
st.write(str(e))
|
350 |
+
|
351 |
+
st.write(
|
352 |
+
"80% of the data will be used for training the model, rest of 20% data will be used for evaluating the model."
|
353 |
+
)
|
354 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
355 |
+
X, Y, test_size=0.2, random_state=42
|
356 |
+
)
|
357 |
+
|
358 |
+
scale = st.selectbox(
|
359 |
+
"Choose how do you want to scale features:",
|
360 |
+
("", "Standard Scaler", "Min Max Scaler"),
|
361 |
+
)
|
362 |
+
|
363 |
+
if scale == "Standard Scaler":
|
364 |
+
scaler = StandardScaler()
|
365 |
+
X_train = scaler.fit_transform(X_train)
|
366 |
+
X_test = scaler.transform(X_test)
|
367 |
+
|
368 |
+
elif scale == "Min Max Scaler":
|
369 |
+
scaler = MinMaxScaler()
|
370 |
+
X_train = scaler.fit_transform(X_train)
|
371 |
+
X_test = scaler.transform(X_test)
|
372 |
+
|
373 |
+
model = st.selectbox(
|
374 |
+
"Choose Regression Model for training: ",
|
375 |
+
(
|
376 |
+
"",
|
377 |
+
"Ridge Regression",
|
378 |
+
"Decision Tree Regressor",
|
379 |
+
"Random Forest Regressor",
|
380 |
+
"SVR",
|
381 |
+
"XGBRF Regressor",
|
382 |
+
"LGBM Regressor",
|
383 |
+
),
|
384 |
+
)
|
385 |
+
|
386 |
+
if model == "Ridge Regression":
|
387 |
+
reg = Ridge(alpha=1.0)
|
388 |
+
reg.fit(X_train, y_train)
|
389 |
+
pred = reg.predict(X_test)
|
390 |
+
st.write(
|
391 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
392 |
+
mean_absolute_error(pred, y_test)
|
393 |
+
)
|
394 |
+
)
|
395 |
+
st.write(
|
396 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
397 |
+
mean_squared_error(pred, y_test)
|
398 |
+
)
|
399 |
+
)
|
400 |
+
st.write(
|
401 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
402 |
+
mean_squared_error(pred, y_test, squared=False)
|
403 |
+
)
|
404 |
+
)
|
405 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
406 |
+
|
407 |
+
if st.download_button(
|
408 |
+
label="Download Trained Model",
|
409 |
+
key="trained_model",
|
410 |
+
on_click=None,
|
411 |
+
data=pickle.dumps(reg),
|
412 |
+
file_name="ridge_regression_model.pkl",
|
413 |
+
mime="application/octet-stream",
|
414 |
+
):
|
415 |
+
with open("ridge_regression_model.pkl", "wb") as model_file:
|
416 |
+
pickle.dump(reg, model_file)
|
417 |
+
|
418 |
+
elif model == "Decision Tree Regressor":
|
419 |
+
reg = DecisionTreeRegressor(max_depth=10)
|
420 |
+
reg.fit(X_train, y_train)
|
421 |
+
pred = reg.predict(X_test)
|
422 |
+
st.write(
|
423 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
424 |
+
mean_absolute_error(pred, y_test)
|
425 |
+
)
|
426 |
+
)
|
427 |
+
st.write(
|
428 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
429 |
+
mean_squared_error(pred, y_test)
|
430 |
+
)
|
431 |
+
)
|
432 |
+
st.write(
|
433 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
434 |
+
mean_squared_error(pred, y_test, squared=False)
|
435 |
+
)
|
436 |
+
)
|
437 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
438 |
+
|
439 |
+
if st.download_button(
|
440 |
+
label="Download Trained Model",
|
441 |
+
key="trained_model",
|
442 |
+
on_click=None,
|
443 |
+
data=pickle.dumps(reg),
|
444 |
+
file_name="decision_tree_regression_model.pkl",
|
445 |
+
mime="application/octet-stream",
|
446 |
+
):
|
447 |
+
with open(
|
448 |
+
"decision_tree_regression_model.pkl", "wb"
|
449 |
+
) as model_file:
|
450 |
+
pickle.dump(reg, model_file)
|
451 |
+
|
452 |
+
elif model == "Random Forest Regressor":
|
453 |
+
reg = RandomForestRegressor(max_depth=10, n_estimators=100)
|
454 |
+
reg.fit(X_train, y_train)
|
455 |
+
pred = reg.predict(X_test)
|
456 |
+
st.write(
|
457 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
458 |
+
mean_absolute_error(pred, y_test)
|
459 |
+
)
|
460 |
+
)
|
461 |
+
st.write(
|
462 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
463 |
+
mean_squared_error(pred, y_test)
|
464 |
+
)
|
465 |
+
)
|
466 |
+
st.write(
|
467 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
468 |
+
mean_squared_error(pred, y_test, squared=False)
|
469 |
+
)
|
470 |
+
)
|
471 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
472 |
+
|
473 |
+
if st.download_button(
|
474 |
+
label="Download Trained Model",
|
475 |
+
key="trained_model",
|
476 |
+
on_click=None,
|
477 |
+
data=pickle.dumps(reg),
|
478 |
+
file_name="random_forest_regression_model.pkl",
|
479 |
+
mime="application/octet-stream",
|
480 |
+
):
|
481 |
+
with open(
|
482 |
+
"random_forest_regression_model.pkl", "wb"
|
483 |
+
) as model_file:
|
484 |
+
pickle.dump(reg, model_file)
|
485 |
+
|
486 |
+
elif model == "SVR":
|
487 |
+
reg = SVR(C=1.0, epsilon=0.2)
|
488 |
+
reg.fit(X_train, y_train)
|
489 |
+
pred = reg.predict(X_test)
|
490 |
+
st.write(
|
491 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
492 |
+
mean_absolute_error(pred, y_test)
|
493 |
+
)
|
494 |
+
)
|
495 |
+
st.write(
|
496 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
497 |
+
mean_squared_error(pred, y_test)
|
498 |
+
)
|
499 |
+
)
|
500 |
+
st.write(
|
501 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
502 |
+
mean_squared_error(pred, y_test, squared=False)
|
503 |
+
)
|
504 |
+
)
|
505 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
506 |
+
|
507 |
+
if st.download_button(
|
508 |
+
label="Download Trained Model",
|
509 |
+
key="trained_model",
|
510 |
+
on_click=None,
|
511 |
+
data=pickle.dumps(reg),
|
512 |
+
file_name="svr_model.pkl",
|
513 |
+
mime="application/octet-stream",
|
514 |
+
):
|
515 |
+
with open("svr_model.pkl", "wb") as model_file:
|
516 |
+
pickle.dump(reg, model_file)
|
517 |
+
|
518 |
+
elif model == "XGBRF Regressor":
|
519 |
+
reg = XGBRFRegressor(reg_lambda=1)
|
520 |
+
reg.fit(X_train, y_train)
|
521 |
+
pred = reg.predict(X_test)
|
522 |
+
st.write(
|
523 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
524 |
+
mean_absolute_error(pred, y_test)
|
525 |
+
)
|
526 |
+
)
|
527 |
+
st.write(
|
528 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
529 |
+
mean_squared_error(pred, y_test)
|
530 |
+
)
|
531 |
+
)
|
532 |
+
st.write(
|
533 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
534 |
+
mean_squared_error(pred, y_test, squared=False)
|
535 |
+
)
|
536 |
+
)
|
537 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
538 |
+
|
539 |
+
if st.download_button(
|
540 |
+
label="Download Trained Model",
|
541 |
+
key="trained_model",
|
542 |
+
on_click=None,
|
543 |
+
data=pickle.dumps(reg),
|
544 |
+
file_name="xgbrf_regression_model.pkl",
|
545 |
+
mime="application/octet-stream",
|
546 |
+
):
|
547 |
+
with open("xgbrf_regression_model.pkl", "wb") as model_file:
|
548 |
+
pickle.dump(reg, model_file)
|
549 |
+
|
550 |
+
elif model == "LGBM Regressor":
|
551 |
+
reg = LGBMRegressor(reg_lambda=1)
|
552 |
+
reg.fit(X_train, y_train)
|
553 |
+
pred = reg.predict(X_test)
|
554 |
+
st.write(
|
555 |
+
"Mean Absolute Error (MAE): {:.4f}".format(
|
556 |
+
mean_absolute_error(pred, y_test)
|
557 |
+
)
|
558 |
+
)
|
559 |
+
st.write(
|
560 |
+
"Mean Squared Error (MSE): {:.4f}".format(
|
561 |
+
mean_squared_error(pred, y_test)
|
562 |
+
)
|
563 |
+
)
|
564 |
+
st.write(
|
565 |
+
"Root Mean Squared Error (RMSE): {:.4f}".format(
|
566 |
+
mean_squared_error(pred, y_test, squared=False)
|
567 |
+
)
|
568 |
+
)
|
569 |
+
st.write("R-squared (R²): {:.4f}".format(r2_score(pred, y_test)))
|
570 |
+
|
571 |
+
if st.download_button(
|
572 |
+
label="Download Trained Model",
|
573 |
+
key="trained_model",
|
574 |
+
on_click=None,
|
575 |
+
data=pickle.dumps(reg),
|
576 |
+
file_name="lgbm_regression_model.pkl",
|
577 |
+
mime="application/octet-stream",
|
578 |
+
):
|
579 |
+
with open("lgbm_regression_model.pkl", "wb") as model_file:
|
580 |
+
pickle.dump(reg, model_file)
|
581 |
+
|
582 |
+
elif algo == "Classification":
|
583 |
+
target = st.selectbox("Chose Target Variable (Y): ", list(data.columns))
|
584 |
+
|
585 |
+
try:
|
586 |
+
X = data.drop(target, axis=1)
|
587 |
+
Y = data[target]
|
588 |
+
except Exception as e:
|
589 |
+
st.write(str(e))
|
590 |
+
|
591 |
+
st.write(
|
592 |
+
"80% of the data will be used for training the model, rest of 20% data will be used for evaluating the model."
|
593 |
+
)
|
594 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
595 |
+
X, Y, test_size=0.2, random_state=42
|
596 |
+
)
|
597 |
+
|
598 |
+
balance = st.selectbox(
|
599 |
+
"Do you want to balance dataset?", ("", "Yes", "No")
|
600 |
+
)
|
601 |
+
if balance == "Yes":
|
602 |
+
piechart(data, target)
|
603 |
+
|
604 |
+
sample = st.selectbox(
|
605 |
+
"Which approach you want to use?",
|
606 |
+
("", "Random Under Sampling", "Random Over Sampling", "SMOTE"),
|
607 |
+
)
|
608 |
+
|
609 |
+
if sample == "Random Under Sampling":
|
610 |
+
rus = RandomUnderSampler(random_state=42)
|
611 |
+
X_train, y_train = rus.fit_resample(X_train, y_train)
|
612 |
+
|
613 |
+
elif sample == "Random Over Sampling":
|
614 |
+
ros = RandomOverSampler(random_state=42)
|
615 |
+
X_train, y_train = ros.fit_resample(X_train, y_train)
|
616 |
+
|
617 |
+
elif sample == "SMOTE":
|
618 |
+
smote = SMOTE(random_state=42)
|
619 |
+
X_train, y_train = smote.fit_resample(X_train, y_train)
|
620 |
+
|
621 |
+
scale = st.selectbox(
|
622 |
+
"Choose how do you want to scale features:",
|
623 |
+
("", "Standard Scaler", "Min Max Scaler"),
|
624 |
+
)
|
625 |
+
|
626 |
+
if scale == "Standard Scaler":
|
627 |
+
scaler = StandardScaler()
|
628 |
+
X_train = scaler.fit_transform(X_train)
|
629 |
+
X_test = scaler.transform(X_test)
|
630 |
+
|
631 |
+
elif scale == "Min Max Scaler":
|
632 |
+
scaler = MinMaxScaler()
|
633 |
+
X_train = scaler.fit_transform(X_train)
|
634 |
+
X_test = scaler.transform(X_test)
|
635 |
+
|
636 |
+
model = st.selectbox(
|
637 |
+
"Choose Classification Model for training: ",
|
638 |
+
(
|
639 |
+
"",
|
640 |
+
"Logistic Regression",
|
641 |
+
"Decision Tree Classifier",
|
642 |
+
"Random Forest Classifier",
|
643 |
+
"SVC",
|
644 |
+
"XGBRF Classifier",
|
645 |
+
"LGBM Classifier",
|
646 |
+
),
|
647 |
+
)
|
648 |
+
|
649 |
+
if model == "Logistic Regression":
|
650 |
+
clf = LogisticRegression(penalty="l2")
|
651 |
+
clf.fit(X_train, y_train)
|
652 |
+
pred = clf.predict(X_test)
|
653 |
+
st.write(
|
654 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
655 |
+
)
|
656 |
+
try:
|
657 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
658 |
+
except ValueError:
|
659 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
660 |
+
|
661 |
+
|
662 |
+
plot_confusion_matrix(
|
663 |
+
pred, y_test, "Logistic Regression Confusion Matrix "
|
664 |
+
)
|
665 |
+
|
666 |
+
if st.download_button(
|
667 |
+
label="Download Trained Model",
|
668 |
+
key="trained_model",
|
669 |
+
on_click=None,
|
670 |
+
data=pickle.dumps(clf),
|
671 |
+
file_name="logistic_regression_model.pkl",
|
672 |
+
mime="application/octet-stream",
|
673 |
+
):
|
674 |
+
with open("logistic_regression_model.pkl", "wb") as model_file:
|
675 |
+
pickle.dump(clf, model_file)
|
676 |
+
|
677 |
+
if model == "Decision Tree Classifier":
|
678 |
+
clf = DecisionTreeClassifier(max_depth=5)
|
679 |
+
clf.fit(X_train, y_train)
|
680 |
+
pred = clf.predict(X_test)
|
681 |
+
st.write(
|
682 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
683 |
+
)
|
684 |
+
try:
|
685 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
686 |
+
except ValueError:
|
687 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
688 |
+
|
689 |
+
plot_confusion_matrix(
|
690 |
+
pred, y_test, "DecisionTree Classifier Confusion Matrix "
|
691 |
+
)
|
692 |
+
|
693 |
+
if st.download_button(
|
694 |
+
label="Download Trained Model",
|
695 |
+
key="trained_model",
|
696 |
+
on_click=None,
|
697 |
+
data=pickle.dumps(clf),
|
698 |
+
file_name="decision_tree_classifier_model.pkl",
|
699 |
+
mime="application/octet-stream",
|
700 |
+
):
|
701 |
+
with open(
|
702 |
+
"decision_tree_classifier_model.pkl", "wb"
|
703 |
+
) as model_file:
|
704 |
+
pickle.dump(clf, model_file)
|
705 |
+
|
706 |
+
if model == "Random Forest Classifier":
|
707 |
+
clf = RandomForestClassifier(n_estimators=100, max_depth=5)
|
708 |
+
clf.fit(X_train, y_train)
|
709 |
+
pred = clf.predict(X_test)
|
710 |
+
st.write(
|
711 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
712 |
+
)
|
713 |
+
try:
|
714 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
715 |
+
except ValueError:
|
716 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
717 |
+
|
718 |
+
plot_confusion_matrix(
|
719 |
+
pred, y_test, "RandomForest Classifier Confusion Matrix "
|
720 |
+
)
|
721 |
+
|
722 |
+
if st.download_button(
|
723 |
+
label="Download Trained Model",
|
724 |
+
key="trained_model",
|
725 |
+
on_click=None,
|
726 |
+
data=pickle.dumps(clf),
|
727 |
+
file_name="random_forest_classifier_model.pkl",
|
728 |
+
mime="application/octet-stream",
|
729 |
+
):
|
730 |
+
with open(
|
731 |
+
"random_forest_classifier_model.pkl", "wb"
|
732 |
+
) as model_file:
|
733 |
+
pickle.dump(clf, model_file)
|
734 |
+
|
735 |
+
if model == "SVC":
|
736 |
+
clf = SVC(C=1.5)
|
737 |
+
clf.fit(X_train, y_train)
|
738 |
+
pred = clf.predict(X_test)
|
739 |
+
st.write(
|
740 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
741 |
+
)
|
742 |
+
try:
|
743 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
744 |
+
except ValueError:
|
745 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
746 |
+
|
747 |
+
|
748 |
+
plot_confusion_matrix(pred, y_test, "SVC Confusion Matrix ")
|
749 |
+
|
750 |
+
if st.download_button(
|
751 |
+
label="Download Trained Model",
|
752 |
+
key="trained_model",
|
753 |
+
on_click=None,
|
754 |
+
data=pickle.dumps(clf),
|
755 |
+
file_name="svc_model.pkl",
|
756 |
+
mime="application/octet-stream",
|
757 |
+
):
|
758 |
+
with open("svc_model.pkl", "wb") as model_file:
|
759 |
+
pickle.dump(clf, model_file)
|
760 |
+
|
761 |
+
if model == "XGBRF Classifier":
|
762 |
+
clf = XGBRFClassifier(reg_lambda=1.0)
|
763 |
+
clf.fit(X_train, y_train)
|
764 |
+
pred = clf.predict(X_test)
|
765 |
+
st.write(
|
766 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
767 |
+
)
|
768 |
+
try:
|
769 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
770 |
+
except ValueError:
|
771 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
772 |
+
|
773 |
+
|
774 |
+
plot_confusion_matrix(
|
775 |
+
pred, y_test, "XGBRF Classifier Confusion Matrix "
|
776 |
+
)
|
777 |
+
|
778 |
+
if st.download_button(
|
779 |
+
label="Download Trained Model",
|
780 |
+
key="trained_model",
|
781 |
+
on_click=None,
|
782 |
+
data=pickle.dumps(clf),
|
783 |
+
file_name="xgbrf_classifier_model.pkl",
|
784 |
+
mime="application/octet-stream",
|
785 |
+
):
|
786 |
+
with open("xgbrf_classifier_model.pkl", "wb") as model_file:
|
787 |
+
pickle.dump(clf, model_file)
|
788 |
+
|
789 |
+
if model == "LGBM Classifier":
|
790 |
+
clf = LGBMClassifier(reg_lambda=1.0)
|
791 |
+
clf.fit(X_train, y_train)
|
792 |
+
pred = clf.predict(X_test)
|
793 |
+
st.write(
|
794 |
+
"Accuracy Score: {:.4f}".format(accuracy_score(pred, y_test))
|
795 |
+
)
|
796 |
+
try:
|
797 |
+
st.write("F1 Score: {:.4f}".format(f1_score(pred, y_test)))
|
798 |
+
except ValueError:
|
799 |
+
st.write("Macro F1 Score: {:.4f}".format(f1_score(pred, y_test, average='macro')))
|
800 |
+
|
801 |
+
plot_confusion_matrix(
|
802 |
+
pred, y_test, "LGBM Classifier Confusion Matrix "
|
803 |
+
)
|
804 |
+
|
805 |
+
if st.download_button(
|
806 |
+
label="Download Trained Model",
|
807 |
+
key="trained_model",
|
808 |
+
on_click=None,
|
809 |
+
data=pickle.dumps(clf),
|
810 |
+
file_name="lgbm_classifier_model.pkl",
|
811 |
+
mime="application/octet-stream",
|
812 |
+
):
|
813 |
+
with open("lgbm_classifier_model.pkl", "wb") as model_file:
|
814 |
+
pickle.dump(clf, model_file)
|
815 |
+
|
816 |
+
|
817 |
+
def load_csv(file):
|
818 |
+
data = pd.read_csv(file)
|
819 |
+
return data
|
820 |
+
|
821 |
+
|
822 |
+
def data_overview(data):
|
823 |
+
r, c = data.shape
|
824 |
+
st.write(f"Number of Rows: {r}")
|
825 |
+
return f"Number of Columns: {c}"
|
826 |
+
|
827 |
+
|
828 |
+
def missing_data(data):
|
829 |
+
missing_values = data.isna().sum()
|
830 |
+
missing_values = missing_values[missing_values > 0]
|
831 |
+
missing_value_per = (missing_values / data.shape[0]) * 100
|
832 |
+
missing_value_per = missing_value_per.round(2).astype(str) + "%"
|
833 |
+
missing_df = pd.DataFrame(
|
834 |
+
{"Missing Values": missing_values, "Percentage": missing_value_per}
|
835 |
+
)
|
836 |
+
missing_df_html = missing_df.to_html(
|
837 |
+
classes="table table-striped", justify="center"
|
838 |
+
)
|
839 |
+
return st.markdown(missing_df_html, unsafe_allow_html=True)
|
840 |
+
|
841 |
+
|
842 |
+
def display_data_info(data):
|
843 |
+
dtypes = pd.DataFrame(data.dtypes, columns=["Data Type"])
|
844 |
+
dtypes.reset_index(inplace=True)
|
845 |
+
nunique = pd.DataFrame(data.nunique(), columns=["Unique Counts"])
|
846 |
+
nunique.reset_index(inplace=True)
|
847 |
+
dtypes.columns = ["Column", "Data Type"]
|
848 |
+
nunique.columns = ["Column", "Unique Counts"]
|
849 |
+
combined_df = pd.merge(dtypes, nunique, on="Column")
|
850 |
+
combined_df_html = combined_df.to_html(
|
851 |
+
classes="table table-striped", justify="center"
|
852 |
+
)
|
853 |
+
return st.markdown(combined_df_html, unsafe_allow_html=True)
|
854 |
+
|
855 |
+
|
856 |
+
def value_counts(data):
|
857 |
+
column = st.selectbox("Select a Column", [""] + list(data.columns))
|
858 |
+
if column:
|
859 |
+
st.write(data[column].value_counts())
|
860 |
+
|
861 |
+
|
862 |
+
def duplicate(data):
|
863 |
+
if data.duplicated().any():
|
864 |
+
st.write(
|
865 |
+
f"There is/are {data.duplicated().sum()} duplicate rows in the DataFrame. Duplicated values will be dropped."
|
866 |
+
)
|
867 |
+
data.drop_duplicates(keep="first", inplace=True)
|
868 |
+
return ""
|
869 |
+
|
870 |
+
else:
|
871 |
+
return "There are no duplicate rows in the DataFrame."
|
872 |
+
|
873 |
+
|
874 |
+
def countplot(data, col):
|
875 |
+
plt.figure(figsize=(10, 6))
|
876 |
+
sns.countplot(y=data[col], palette=palette[1:], edgecolor="#1c1c1c", linewidth=2)
|
877 |
+
plt.title(f"Countplot of {col} Column")
|
878 |
+
st.pyplot(plt)
|
879 |
+
|
880 |
+
|
881 |
+
def piechart(data, col):
|
882 |
+
value_counts = data[col].value_counts()
|
883 |
+
plt.figure(figsize=(8, 6))
|
884 |
+
plt.pie(
|
885 |
+
value_counts,
|
886 |
+
labels=value_counts.index,
|
887 |
+
autopct="%1.1f%%",
|
888 |
+
colors=palette,
|
889 |
+
shadow=False,
|
890 |
+
wedgeprops=dict(edgecolor="#1c1c1c"),
|
891 |
+
)
|
892 |
+
plt.title(f"Pie Chart of {col} Column")
|
893 |
+
st.pyplot(plt)
|
894 |
+
|
895 |
+
|
896 |
+
def histogram(data, col):
|
897 |
+
plt.figure(figsize=(10, 6))
|
898 |
+
sns.histplot(
|
899 |
+
data[col],
|
900 |
+
kde=True,
|
901 |
+
color=palette[4],
|
902 |
+
fill=True,
|
903 |
+
edgecolor="#1c1c1c",
|
904 |
+
linewidth=2,
|
905 |
+
)
|
906 |
+
plt.title(f"Histogram of {col} Column")
|
907 |
+
st.pyplot(plt)
|
908 |
+
|
909 |
+
|
910 |
+
def violinplot(data, col):
|
911 |
+
plt.figure(figsize=(10, 6))
|
912 |
+
sns.violinplot(data[col], color=palette[8])
|
913 |
+
plt.title(f"Violin Plot of {col} Column")
|
914 |
+
st.pyplot(plt)
|
915 |
+
|
916 |
+
|
917 |
+
def scatterplot(data, col):
|
918 |
+
plt.figure(figsize=(10, 8))
|
919 |
+
sns.scatterplot(data[col], color=palette[3])
|
920 |
+
plt.title(f"Scatter Plot of {col} Column")
|
921 |
+
st.pyplot(plt)
|
922 |
+
|
923 |
+
|
924 |
+
def biscatterplot(data, cols):
|
925 |
+
try:
|
926 |
+
plt.figure(figsize=(10, 8))
|
927 |
+
sns.scatterplot(
|
928 |
+
data=data,
|
929 |
+
x=cols[0],
|
930 |
+
y=cols[1],
|
931 |
+
palette=palette[1:],
|
932 |
+
edgecolor="#1c1c1c",
|
933 |
+
linewidth=2,
|
934 |
+
)
|
935 |
+
plt.title(f"Scatter Plot of {cols[0]} and {cols[1]} Columns")
|
936 |
+
st.pyplot(plt)
|
937 |
+
except Exception as e:
|
938 |
+
st.write(str(e))
|
939 |
+
|
940 |
+
|
941 |
+
def bibarplot(data, cols):
|
942 |
+
try:
|
943 |
+
plt.figure(figsize=(10, 8))
|
944 |
+
sns.barplot(
|
945 |
+
data=data,
|
946 |
+
x=cols[0],
|
947 |
+
y=cols[1],
|
948 |
+
palette=palette[1:],
|
949 |
+
edgecolor="#1c1c1c",
|
950 |
+
linewidth=2,
|
951 |
+
)
|
952 |
+
plt.title(f"Bar Plot of {cols[0]} and {cols[1]} Columns")
|
953 |
+
st.pyplot(plt)
|
954 |
+
except Exception as e:
|
955 |
+
st.write(str(e))
|
956 |
+
|
957 |
+
|
958 |
+
def biboxplot(data, cols):
|
959 |
+
try:
|
960 |
+
plt.figure(figsize=(10, 8))
|
961 |
+
sns.boxplot(data=data, x=cols[0], y=cols[1], palette=palette[1:], linewidth=2)
|
962 |
+
plt.title(f"Box Plot of {cols[0]} and {cols[1]} Columns")
|
963 |
+
st.pyplot(plt)
|
964 |
+
except Exception as e:
|
965 |
+
st.write(str(e))
|
966 |
+
|
967 |
+
|
968 |
+
def paretoplot(data, categorical_col):
|
969 |
+
try:
|
970 |
+
value_counts = data[categorical_col].value_counts()
|
971 |
+
cumulative_percentage = (value_counts / value_counts.sum()).cumsum()
|
972 |
+
pareto_df = pd.DataFrame(
|
973 |
+
{
|
974 |
+
"Categories": value_counts.index,
|
975 |
+
"Frequency": value_counts.values,
|
976 |
+
"Cumulative Percentage": cumulative_percentage.values * 100,
|
977 |
+
}
|
978 |
+
)
|
979 |
+
pareto_df = pareto_df.sort_values(by="Frequency", ascending=False)
|
980 |
+
|
981 |
+
fig, ax1 = plt.subplots(figsize=(10, 8))
|
982 |
+
ax1.bar(
|
983 |
+
pareto_df["Categories"],
|
984 |
+
pareto_df["Frequency"],
|
985 |
+
color=palette[1:],
|
986 |
+
edgecolor="#1c1c1c",
|
987 |
+
linewidth=2,
|
988 |
+
)
|
989 |
+
ax2 = ax1.twinx()
|
990 |
+
ax2.yaxis.set_major_formatter(PercentFormatter())
|
991 |
+
ax2.plot(
|
992 |
+
pareto_df["Categories"],
|
993 |
+
pareto_df["Cumulative Percentage"],
|
994 |
+
color=palette[3],
|
995 |
+
marker="D",
|
996 |
+
ms=10,
|
997 |
+
)
|
998 |
+
ax1.set_xlabel(categorical_col)
|
999 |
+
ax1.set_ylabel("Frequency", color=palette[0])
|
1000 |
+
ax2.set_ylabel("Cumulative Percentage", color=palette[3])
|
1001 |
+
st.pyplot(fig)
|
1002 |
+
|
1003 |
+
except Exception as e:
|
1004 |
+
pass
|
1005 |
+
|
1006 |
+
|
1007 |
+
def plot_confusion_matrix(y_true, y_pred, title):
|
1008 |
+
cm = confusion_matrix(y_true, y_pred)
|
1009 |
+
plt.figure(figsize=(6, 4))
|
1010 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
|
1011 |
+
plt.xlabel("Predicted Label")
|
1012 |
+
plt.ylabel("True Label")
|
1013 |
+
plt.title(title)
|
1014 |
+
st.pyplot(plt)
|
1015 |
+
|
1016 |
+
|
1017 |
+
if __name__ == "__main__":
|
1018 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
matplotlib
|
5 |
+
seaborn
|
6 |
+
imblearn
|
7 |
+
xgboost
|
8 |
+
lightgbm
|