Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
2 |
from peft import PeftModel, PeftConfig
|
3 |
import torch
|
@@ -13,14 +14,6 @@ def wrap_text(text, width=90):
|
|
13 |
return wrapped_text
|
14 |
|
15 |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
16 |
-
"""
|
17 |
-
Generates text using a large language model, given a user input and a system prompt.
|
18 |
-
Args:
|
19 |
-
user_input: The user's input text to generate a response for.
|
20 |
-
system_prompt: Optional system prompt.
|
21 |
-
Returns:
|
22 |
-
A string containing the generated text.
|
23 |
-
"""
|
24 |
# Combine user input and system prompt
|
25 |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
26 |
|
@@ -50,12 +43,12 @@ def multimodal_prompt(user_input, system_prompt="You are an expert medical analy
|
|
50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
|
52 |
# Use the base model's ID
|
53 |
-
base_model_id = "
|
54 |
-
model_directory = "
|
55 |
|
56 |
# Instantiate the Tokenizer
|
57 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
58 |
-
# tokenizer = AutoTokenizer.from_pretrained("
|
59 |
tokenizer.pad_token = tokenizer.eos_token
|
60 |
tokenizer.padding_side = 'left'
|
61 |
|
@@ -66,9 +59,9 @@ tokenizer.padding_side = 'left'
|
|
66 |
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
|
67 |
|
68 |
# Load the PEFT model
|
69 |
-
peft_config = PeftConfig.from_pretrained("
|
70 |
-
peft_model = MistralForCausalLM.from_pretrained("
|
71 |
-
peft_model = PeftModel.from_pretrained(peft_model, "
|
72 |
|
73 |
class ChatBot:
|
74 |
def __init__(self):
|
@@ -97,7 +90,7 @@ class ChatBot:
|
|
97 |
bot = ChatBot()
|
98 |
|
99 |
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀"
|
100 |
-
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [
|
101 |
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
102 |
|
103 |
iface = gr.Interface(
|
|
|
1 |
+
|
2 |
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
3 |
from peft import PeftModel, PeftConfig
|
4 |
import torch
|
|
|
14 |
return wrapped_text
|
15 |
|
16 |
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Combine user input and system prompt
|
18 |
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
19 |
|
|
|
43 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
44 |
|
45 |
# Use the base model's ID
|
46 |
+
base_model_id = "HuggingFaceH4/zephyr-7b-beta"
|
47 |
+
model_directory = "pseudolab/K23_MiniMed"
|
48 |
|
49 |
# Instantiate the Tokenizer
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True, padding_side="left")
|
51 |
+
# tokenizer = AutoTokenizer.from_pretrained("pseudolab/K23_MiniMed", trust_remote_code=True, padding_side="left")
|
52 |
tokenizer.pad_token = tokenizer.eos_token
|
53 |
tokenizer.padding_side = 'left'
|
54 |
|
|
|
59 |
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
|
60 |
|
61 |
# Load the PEFT model
|
62 |
+
peft_config = PeftConfig.from_pretrained("pseudolab/K23_MiniMed")
|
63 |
+
peft_model = MistralForCausalLM.from_pretrained("HuggingFaceH4/zephyr-7b-beta", trust_remote_code=True)
|
64 |
+
peft_model = PeftModel.from_pretrained(peft_model, "pseudolab/K23_MiniMed")
|
65 |
|
66 |
class ChatBot:
|
67 |
def __init__(self):
|
|
|
90 |
bot = ChatBot()
|
91 |
|
92 |
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀"
|
93 |
+
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [pseudolab/K23_MiniMed](https://huggingface.co/pseudolab/K23_MiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
94 |
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
95 |
|
96 |
iface = gr.Interface(
|