Spaces:
Running
Running
File size: 16,558 Bytes
e93eb3d 046eafc e93eb3d 56980e9 e93eb3d 046eafc e93eb3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import streamlit as st
import time
try:
from src.models import get_all_model_names
from src.open_strawberry import get_defaults, manage_conversation
except (ModuleNotFoundError, ImportError):
from models import get_all_model_names
from open_strawberry import get_defaults, manage_conversation
(model, system_prompt, initial_prompt, expected_answer,
next_prompts, num_turns, show_next, final_prompt,
temperature, max_tokens,
num_turns_final_mod,
show_cot,
verbose) = get_defaults()
st.title("Open Strawberry Conversation")
st.markdown("[Open Strawberry GitHub Repo](https://github.com/pseudotensor/open-strawberry)")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "turn_count" not in st.session_state:
st.session_state.turn_count = 0
if "input_key" not in st.session_state:
st.session_state.input_key = 0
if "conversation_started" not in st.session_state:
st.session_state.conversation_started = False
if "waiting_for_continue" not in st.session_state:
st.session_state.waiting_for_continue = False
if "generator" not in st.session_state:
st.session_state.generator = None # Store the generator in session state
if "prompt" not in st.session_state:
st.session_state.prompt = None # Store the prompt in session state
if "answer" not in st.session_state:
st.session_state.answer = None
if "system_prompt" not in st.session_state:
st.session_state.system_prompt = None
if "output_tokens" not in st.session_state:
st.session_state.output_tokens = 0
if "input_tokens" not in st.session_state:
st.session_state.input_tokens = 0
if "cache_creation_input_tokens" not in st.session_state:
st.session_state.cache_creation_input_tokens = 0
if "cache_read_input_tokens" not in st.session_state:
st.session_state.cache_read_input_tokens = 0
if "verbose" not in st.session_state:
st.session_state.verbose = verbose
if "max_tokens" not in st.session_state:
st.session_state.max_tokens = max_tokens
if "seed" not in st.session_state:
st.session_state.seed = 0
if "temperature" not in st.session_state:
st.session_state.temperature = temperature
if "next_prompts" not in st.session_state:
st.session_state.next_prompts = next_prompts
if "final_prompt" not in st.session_state:
st.session_state.final_prompt = final_prompt
# Function to display chat messages
def display_chat():
display_step = 1
for message in st.session_state.messages:
if message["role"] == "assistant":
if 'final' in message and message['final']:
display_final(message)
elif 'turn_title' in message and message['turn_title']:
display_turn_title(message, display_step=display_step)
display_step += 1
else:
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
assistant_container1 = st.chat_message("assistant")
with assistant_container1.container():
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True)
elif message["role"] == "user":
if not message["initial"] and not st.session_state.show_next:
continue
user_container1 = st.chat_message("user")
with user_container1:
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True)
def display_final(chunk1, can_rerun=False):
if 'final' in chunk1 and chunk1['final']:
if st.session_state.answer:
if st.session_state.answer.strip() in chunk1["content"]:
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True)
else:
st.markdown(f'Expected: **{st.session_state.answer.strip()}**', unsafe_allow_html=True)
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True)
else:
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True)
final = chunk1["content"].strip().replace('\n', ' \n')
if '\n' in final or '<br>' in final:
st.markdown(f'{final}', unsafe_allow_html=True)
else:
st.markdown(f'**{final}**', unsafe_allow_html=True)
if can_rerun:
# rerun to get token stats
st.rerun()
def display_turn_title(chunk1, display_step=None):
if display_step is None:
display_step = st.session_state.turn_count
name = "Completed Step"
else:
name = "Step"
if 'turn_title' in chunk1 and chunk1['turn_title']:
turn_title = chunk1["content"].strip().replace('\n', ' \n')
step_time = f' in time {str(int(chunk1["thinking_time"]))}s'
acum_time = f' in total {str(int(chunk1["total_thinking_time"]))}s'
st.markdown(f'**{name} {display_step}: {turn_title}{step_time}{acum_time}**', unsafe_allow_html=True)
if st.button("Start Reasoning Engine", disabled=st.session_state.conversation_started):
st.session_state.conversation_started = True
# Sidebar
st.sidebar.title("Controls")
on_hf_spaces = os.getenv("HF_SPACES", '0') == '1'
def save_env_vars(env_vars):
assert not on_hf_spaces, "Cannot save env vars in HF Spaces"
env_path = os.path.join(os.path.dirname(__file__), "..", ".env")
from dotenv import set_key
for key, value in env_vars.items():
set_key(env_path, key, value)
def get_dotenv_values():
if on_hf_spaces:
return st.session_state.secrets
else:
from dotenv import dotenv_values
return dotenv_values(os.path.join(os.path.dirname(__file__), "..", ".env"))
if 'secrets' not in st.session_state:
if on_hf_spaces:
# allow user to enter
st.session_state.secrets = dict(OPENAI_API_KEY='',
OPENAI_BASE_URL='https://api.openai.com/v1',
OPENAI_MODEL_NAME='',
# OLLAMA_OPENAI_API_KEY='',
# OLLAMA_OPENAI_BASE_URL='http://localhost:11434/v1/',
# OLLAMA_OPENAI_MODEL_NAME='',
# AZURE_OPENAI_API_KEY='',
# AZURE_OPENAI_API_VERSION='',
# AZURE_OPENAI_ENDPOINT='',
# AZURE_OPENAI_DEPLOYMENT='',
# AZURE_OPENAI_MODEL_NAME='',
GEMINI_API_KEY='',
# MISTRAL_API_KEY='',
GROQ_API_KEY='',
ANTHROPIC_API_KEY='',
)
else:
st.session_state.secrets = {}
def update_model_selection():
visible_models1 = get_all_model_names(st.session_state.secrets, on_hf_spaces)
if visible_models1 and "model_name" in st.session_state:
if st.session_state.model_name not in visible_models1:
st.session_state.model_name = visible_models1[0]
# Replace the existing model selection code with this
if 'model_name' not in st.session_state or not st.session_state.model_name:
update_model_selection()
# Model selection
visible_models = get_all_model_names(st.session_state.secrets, on_hf_spaces)
st.sidebar.selectbox("Select Model", visible_models, key="model_name",
disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Next", value=show_next, key="show_next", disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns to Check if Final Answer", value=num_turns_final_mod, key="num_turns_final_mod",
disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns per User Click of Continue", value=num_turns, key="num_turns",
disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Chain of Thoughts Details", value=show_cot, key="show_cot",
disabled=st.session_state.conversation_started)
# Reset conversation button
reset_clicked = st.sidebar.button("Reset Conversation")
with st.sidebar.expander("Edit in-memory session secrets" if on_hf_spaces else "Edit .env", expanded=on_hf_spaces):
dotenv_dict = get_dotenv_values()
new_env = {}
for k, v in dotenv_dict.items():
new_env[k] = st.text_input(k, value=v, key=k, disabled=st.session_state.conversation_started, type="password")
st.session_state.secrets[k] = new_env[k]
save_secrets_clicked = st.button("Save dotenv" if not on_hf_spaces else "Save secrets to memory")
if save_secrets_clicked:
if on_hf_spaces:
st.success("secrets temporarily stored to your session memory only")
else:
save_env_vars(st.session_state.user_secrets)
st.success("dotenv saved to .env file")
if reset_clicked:
st.session_state.messages = []
st.session_state.turn_count = 0
st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
st.session_state.input_key += 1
st.session_state.conversation_started = False
st.session_state.generator = None # Reset the generator
reset_clicked = False
st.session_state.output_tokens = 0
st.session_state.input_tokens = 0
st.session_state.cache_creation_input_tokens = 0
st.session_state.cache_read_input_tokens = 0
st.rerun()
st.session_state.waiting_for_continue = False
# Display debug information
st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
num_messages = len([x for x in st.session_state.messages if x.get('role', '') == 'assistant'])
st.sidebar.write(f"Number of AI messages: {num_messages}")
st.sidebar.write(f"Conversation started: {st.session_state.conversation_started}")
st.sidebar.write(f"Output tokens: {st.session_state.output_tokens}")
st.sidebar.write(f"Input tokens: {st.session_state.input_tokens}")
st.sidebar.write(f"Cache creation input tokens: {st.session_state.cache_creation_input_tokens}")
st.sidebar.write(f"Cache read input tokens: {st.session_state.cache_read_input_tokens}")
# Handle user input
if not st.session_state.conversation_started:
prompt = st.text_area("What would you like to ask?", value=initial_prompt,
key=f"input_{st.session_state.input_key}", height=500)
st.session_state.prompt = prompt
answer = st.text_area("Expected answer (Empty if do not know)", value=expected_answer,
key=f"answer_{st.session_state.input_key}", height=100)
st.session_state.answer = answer
system_prompt = st.text_area("System Prompt", value=system_prompt,
key=f"system_prompt_{st.session_state.input_key}", height=200)
st.session_state.system_prompt = system_prompt
else:
st.session_state.conversation_started = True
st.session_state.input_key += 1
# Display chat history
chat_container = st.container()
with chat_container:
display_chat()
# Process conversation
current_assistant_message = ''
assistant_placeholder = None
try:
while True:
if st.session_state.waiting_for_continue:
time.sleep(0.1) # Short sleep to prevent excessive CPU usage
continue
if not st.session_state.conversation_started:
time.sleep(0.1)
continue
elif st.session_state.generator is None:
st.session_state.generator = manage_conversation(
model=st.session_state["model_name"],
system=st.session_state.system_prompt,
initial_prompt=st.session_state.prompt,
next_prompts=st.session_state.next_prompts,
final_prompt=st.session_state.final_prompt,
num_turns_final_mod=st.session_state.num_turns_final_mod,
num_turns=st.session_state.num_turns,
temperature=st.session_state.temperature,
max_tokens=st.session_state.max_tokens,
seed=st.session_state.seed,
secrets=st.session_state.secrets,
verbose=st.session_state.verbose,
)
chunk = next(st.session_state.generator)
if chunk["role"] == "assistant":
if not chunk.get('final', False) and not chunk.get('turn_title', False):
current_assistant_message += chunk["content"]
if assistant_placeholder is None:
assistant_placeholder = st.empty() # Placeholder for assistant's message
# Update the assistant container with the progressively streaming message
with assistant_placeholder.container():
# Update in the same chat message
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
st.chat_message("assistant").markdown(current_assistant_message, unsafe_allow_html=True)
if 'turn_title' in chunk and chunk['turn_title']:
st.session_state.messages.append(
{"role": "assistant", "content": chunk['content'], 'turn_title': True,
'thinking_time': chunk['thinking_time'],
'total_thinking_time': chunk['total_thinking_time']})
display_turn_title(chunk)
if 'final' in chunk and chunk['final']:
# user role would normally do this, but on final step needs to be here
st.session_state.messages.append(
{"role": "assistant", "content": current_assistant_message, 'final': False})
# last message, so won't reach user turn, so need to store final assistant message from parsing
st.session_state.messages.append(
{"role": "assistant", "content": chunk['content'], 'final': True})
display_final(chunk, can_rerun=True)
elif chunk["role"] == "user":
if current_assistant_message:
st.session_state.messages.append(
{"role": "assistant", "content": current_assistant_message, 'final': chunk.get('final', False)})
# Reset assistant message when user provides input
# Display user message
if not chunk["initial"] and not st.session_state.show_next:
pass
else:
user_container = st.chat_message("user")
with user_container:
st.markdown(chunk["content"].replace('\n', ' \n'), unsafe_allow_html=True)
st.session_state.messages.append({"role": "user", "content": chunk["content"], 'initial': chunk["initial"]})
st.session_state.turn_count += 1
if current_assistant_message:
assistant_placeholder = st.empty() # Reset placeholder
current_assistant_message = ""
elif chunk["role"] == "action":
if chunk["content"] in ["continue?"]:
# Continue conversation button
continue_clicked = st.button("Continue Conversation")
st.session_state.waiting_for_continue = True
st.session_state.turn_count += 1
if current_assistant_message:
st.session_state.messages.append({"role": "assistant", "content": current_assistant_message})
assistant_placeholder = st.empty() # Reset placeholder
current_assistant_message = ""
elif chunk["content"] == "end":
break
elif chunk["role"] == "usage":
st.session_state.output_tokens += chunk["content"]["output_tokens"] if "output_tokens" in chunk[
"content"] else 0
st.session_state.input_tokens += chunk["content"]["input_tokens"] if "input_tokens" in chunk[
"content"] else 0
st.session_state.cache_creation_input_tokens += chunk["content"][
"cache_creation_input_tokens"] if "cache_creation_input_tokens" in chunk["content"] else 0
st.session_state.cache_read_input_tokens += chunk["content"][
"cache_read_input_tokens"] if "cache_read_input_tokens" in chunk["content"] else 0
time.sleep(0.001) # Small delay to prevent excessive updates
except StopIteration:
pass
|