Spaces:
Running
Running
import os | |
import streamlit as st | |
import time | |
try: | |
from src.models import get_model_names | |
from src.open_strawberry import get_defaults, manage_conversation | |
except (ModuleNotFoundError, ImportError): | |
from models import get_model_names | |
from open_strawberry import get_defaults, manage_conversation | |
(model, system_prompt, initial_prompt, expected_answer, | |
next_prompts, num_turns, show_next, final_prompt, | |
temperature, max_tokens, | |
num_turns_final_mod, | |
show_cot, | |
verbose) = get_defaults() | |
st.title("Open Strawberry Conversation") | |
st.markdown("[Open Strawberry GitHub Repo](https://github.com/pseudotensor/open-strawberry)") | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
if "turn_count" not in st.session_state: | |
st.session_state.turn_count = 0 | |
if "input_key" not in st.session_state: | |
st.session_state.input_key = 0 | |
if "conversation_started" not in st.session_state: | |
st.session_state.conversation_started = False | |
if "waiting_for_continue" not in st.session_state: | |
st.session_state.waiting_for_continue = False | |
if "generator" not in st.session_state: | |
st.session_state.generator = None # Store the generator in session state | |
if "prompt" not in st.session_state: | |
st.session_state.prompt = None # Store the prompt in session state | |
if "answer" not in st.session_state: | |
st.session_state.answer = None | |
if "system_prompt" not in st.session_state: | |
st.session_state.system_prompt = None | |
if "output_tokens" not in st.session_state: | |
st.session_state.output_tokens = 0 | |
if "input_tokens" not in st.session_state: | |
st.session_state.input_tokens = 0 | |
if "cache_creation_input_tokens" not in st.session_state: | |
st.session_state.cache_creation_input_tokens = 0 | |
if "cache_read_input_tokens" not in st.session_state: | |
st.session_state.cache_read_input_tokens = 0 | |
if "verbose" not in st.session_state: | |
st.session_state.verbose = verbose | |
if "max_tokens" not in st.session_state: | |
st.session_state.max_tokens = max_tokens | |
if "seed" not in st.session_state: | |
st.session_state.seed = 0 | |
if "temperature" not in st.session_state: | |
st.session_state.temperature = temperature | |
if "next_prompts" not in st.session_state: | |
st.session_state.next_prompts = next_prompts | |
if "final_prompt" not in st.session_state: | |
st.session_state.final_prompt = final_prompt | |
# Function to display chat messages | |
def display_chat(): | |
display_step = 1 | |
for message in st.session_state.messages: | |
if message["role"] == "assistant": | |
if 'final' in message and message['final']: | |
display_final(message) | |
elif 'turn_title' in message and message['turn_title']: | |
display_turn_title(message, display_step=display_step) | |
display_step += 1 | |
else: | |
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]): | |
assistant_container1 = st.chat_message("assistant") | |
with assistant_container1.container(): | |
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True) | |
elif message["role"] == "user": | |
if not message["initial"] and not st.session_state.show_next: | |
continue | |
user_container1 = st.chat_message("user") | |
with user_container1: | |
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True) | |
def display_final(chunk1, can_rerun=False): | |
if 'final' in chunk1 and chunk1['final']: | |
if st.session_state.answer: | |
if st.session_state.answer.strip() in chunk1["content"]: | |
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'Expected: **{st.session_state.answer.strip()}**', unsafe_allow_html=True) | |
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True) | |
else: | |
st.markdown(f'<h3 class="expander-title">π Final Answer</h3>', unsafe_allow_html=True) | |
final = chunk1["content"].strip().replace('\n', ' \n') | |
if '\n' in final or '<br>' in final: | |
st.markdown(f'{final}', unsafe_allow_html=True) | |
else: | |
st.markdown(f'**{final}**', unsafe_allow_html=True) | |
if can_rerun: | |
# rerun to get token stats | |
st.rerun() | |
def display_turn_title(chunk1, display_step=None): | |
if display_step is None: | |
display_step = st.session_state.turn_count | |
name = "Completed Step" | |
else: | |
name = "Step" | |
if 'turn_title' in chunk1 and chunk1['turn_title']: | |
turn_title = chunk1["content"].strip().replace('\n', ' \n') | |
step_time = f' in time {str(int(chunk1["thinking_time"]))}s' | |
acum_time = f' in total {str(int(chunk1["total_thinking_time"]))}s' | |
st.markdown(f'**{name} {display_step}: {turn_title}{step_time}{acum_time}**', unsafe_allow_html=True) | |
if st.button("Start Reasoning Engine", disabled=st.session_state.conversation_started): | |
st.session_state.conversation_started = True | |
# Sidebar | |
st.sidebar.title("Controls") | |
on_hf_spaces = os.getenv("HF_SPACES", '0') == '1' | |
def save_env_vars(env_vars): | |
assert not on_hf_spaces, "Cannot save env vars in HF Spaces" | |
env_path = os.path.join(os.path.dirname(__file__), "..", ".env") | |
from dotenv import set_key | |
for key, value in env_vars.items(): | |
set_key(env_path, key, value) | |
def get_dotenv_values(): | |
if on_hf_spaces: | |
return st.session_state.secrets | |
else: | |
from dotenv import dotenv_values | |
return dotenv_values(os.path.join(os.path.dirname(__file__), "..", ".env")) | |
if 'secrets' not in st.session_state: | |
if on_hf_spaces: | |
# allow user to enter | |
st.session_state.secrets = dict(OPENAI_API_KEY='', | |
OPENAI_BASE_URL='https://api.openai.com/v1', | |
OPENAI_MODEL_NAME='', | |
# OLLAMA_OPENAI_API_KEY='', | |
# OLLAMA_OPENAI_BASE_URL='http://localhost:11434/v1/', | |
# OLLAMA_OPENAI_MODEL_NAME='', | |
# AZURE_OPENAI_API_KEY='', | |
# AZURE_OPENAI_API_VERSION='', | |
# AZURE_OPENAI_ENDPOINT='', | |
# AZURE_OPENAI_DEPLOYMENT='', | |
# AZURE_OPENAI_MODEL_NAME='', | |
GEMINI_API_KEY='', | |
# MISTRAL_API_KEY='', | |
GROQ_API_KEY='', | |
CEREBRAS_OPENAI_API_KEY='', | |
ANTHROPIC_API_KEY='', | |
) | |
else: | |
st.session_state.secrets = {} | |
def update_model_selection(): | |
visible_models1 = get_model_names(st.session_state.secrets, on_hf_spaces) | |
if visible_models1 and "model_name" in st.session_state: | |
if st.session_state.model_name not in visible_models1: | |
st.session_state.model_name = visible_models1[0] | |
# Replace the existing model selection code with this | |
if 'model_name' not in st.session_state or not st.session_state.model_name: | |
update_model_selection() | |
# Model selection | |
visible_models = get_model_names(st.session_state.secrets, on_hf_spaces) | |
st.sidebar.selectbox("Select Model", visible_models, key="model_name", | |
disabled=st.session_state.conversation_started) | |
st.sidebar.checkbox("Show Next", value=show_next, key="show_next", disabled=st.session_state.conversation_started) | |
st.sidebar.number_input("Num Turns to Check if Final Answer", value=num_turns_final_mod, key="num_turns_final_mod", | |
disabled=st.session_state.conversation_started) | |
st.sidebar.number_input("Num Turns per User Click of Continue", value=num_turns, key="num_turns", | |
disabled=st.session_state.conversation_started) | |
st.sidebar.checkbox("Show Chain of Thoughts Details", value=show_cot, key="show_cot", | |
disabled=st.session_state.conversation_started) | |
# Reset conversation button | |
reset_clicked = st.sidebar.button("Reset Conversation") | |
with st.sidebar.expander("Edit in-memory session secrets" if on_hf_spaces else "Edit .env", expanded=on_hf_spaces): | |
dotenv_dict = get_dotenv_values() | |
new_env = {} | |
for k, v in dotenv_dict.items(): | |
new_env[k] = st.text_input(k, value=v, key=k, disabled=st.session_state.conversation_started, type="password") | |
st.session_state.secrets[k] = new_env[k] | |
save_secrets_clicked = st.button("Save dotenv" if not on_hf_spaces else "Save secrets to memory") | |
if save_secrets_clicked: | |
if on_hf_spaces: | |
st.success("secrets temporarily stored to your session memory only") | |
else: | |
save_env_vars(st.session_state.user_secrets) | |
st.success("dotenv saved to .env file") | |
if reset_clicked: | |
st.session_state.messages = [] | |
st.session_state.turn_count = 0 | |
st.sidebar.write(f"Turn count: {st.session_state.turn_count}") | |
st.session_state.input_key += 1 | |
st.session_state.conversation_started = False | |
st.session_state.generator = None # Reset the generator | |
reset_clicked = False | |
st.session_state.output_tokens = 0 | |
st.session_state.input_tokens = 0 | |
st.session_state.cache_creation_input_tokens = 0 | |
st.session_state.cache_read_input_tokens = 0 | |
st.rerun() | |
st.session_state.waiting_for_continue = False | |
# Display debug information | |
st.sidebar.write(f"Turn count: {st.session_state.turn_count}") | |
num_messages = len([x for x in st.session_state.messages if x.get('role', '') == 'assistant']) | |
st.sidebar.write(f"Number of AI messages: {num_messages}") | |
st.sidebar.write(f"Conversation started: {st.session_state.conversation_started}") | |
st.sidebar.write(f"Output tokens: {st.session_state.output_tokens}") | |
st.sidebar.write(f"Input tokens: {st.session_state.input_tokens}") | |
st.sidebar.write(f"Cache creation input tokens: {st.session_state.cache_creation_input_tokens}") | |
st.sidebar.write(f"Cache read input tokens: {st.session_state.cache_read_input_tokens}") | |
# Handle user input | |
if not st.session_state.conversation_started: | |
prompt = st.text_area("What would you like to ask?", value=initial_prompt, | |
key=f"input_{st.session_state.input_key}", height=500) | |
st.session_state.prompt = prompt | |
answer = st.text_area("Expected answer (Empty if do not know)", value=expected_answer, | |
key=f"answer_{st.session_state.input_key}", height=100) | |
st.session_state.answer = answer | |
system_prompt = st.text_area("Base System Prompt", value=system_prompt, | |
key=f"system_prompt_{st.session_state.input_key}", height=200) | |
st.session_state.system_prompt = system_prompt | |
else: | |
st.session_state.conversation_started = True | |
st.session_state.input_key += 1 | |
# Display chat history | |
chat_container = st.container() | |
with chat_container: | |
display_chat() | |
# Process conversation | |
current_assistant_message = '' | |
assistant_placeholder = None | |
try: | |
while True: | |
if st.session_state.waiting_for_continue: | |
time.sleep(0.1) # Short sleep to prevent excessive CPU usage | |
continue | |
if not st.session_state.conversation_started: | |
time.sleep(0.1) | |
continue | |
elif st.session_state.generator is None: | |
st.session_state.generator = manage_conversation( | |
model=st.session_state["model_name"], | |
system=st.session_state.system_prompt, | |
initial_prompt=st.session_state.prompt, | |
next_prompts=st.session_state.next_prompts, | |
final_prompt=st.session_state.final_prompt, | |
num_turns_final_mod=st.session_state.num_turns_final_mod, | |
num_turns=st.session_state.num_turns, | |
temperature=st.session_state.temperature, | |
max_tokens=st.session_state.max_tokens, | |
seed=st.session_state.seed, | |
secrets=st.session_state.secrets, | |
verbose=st.session_state.verbose, | |
) | |
chunk = next(st.session_state.generator) | |
if chunk["role"] == "assistant": | |
if not chunk.get('final', False) and not chunk.get('turn_title', False): | |
current_assistant_message += chunk["content"] | |
if assistant_placeholder is None: | |
assistant_placeholder = st.empty() # Placeholder for assistant's message | |
# Update the assistant container with the progressively streaming message | |
with assistant_placeholder.container(): | |
# Update in the same chat message | |
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]): | |
st.chat_message("assistant").markdown(current_assistant_message, unsafe_allow_html=True) | |
if 'turn_title' in chunk and chunk['turn_title']: | |
st.session_state.messages.append( | |
{"role": "assistant", "content": chunk['content'], 'turn_title': True, | |
'thinking_time': chunk['thinking_time'], | |
'total_thinking_time': chunk['total_thinking_time']}) | |
display_turn_title(chunk) | |
if 'final' in chunk and chunk['final']: | |
# user role would normally do this, but on final step needs to be here | |
st.session_state.messages.append( | |
{"role": "assistant", "content": current_assistant_message, 'final': False}) | |
# last message, so won't reach user turn, so need to store final assistant message from parsing | |
st.session_state.messages.append( | |
{"role": "assistant", "content": chunk['content'], 'final': True}) | |
display_final(chunk, can_rerun=True) | |
elif chunk["role"] == "user": | |
if current_assistant_message: | |
st.session_state.messages.append( | |
{"role": "assistant", "content": current_assistant_message, 'final': chunk.get('final', False)}) | |
# Reset assistant message when user provides input | |
# Display user message | |
if not chunk["initial"] and not st.session_state.show_next: | |
pass | |
else: | |
user_container = st.chat_message("user") | |
with user_container: | |
st.markdown(chunk["content"].replace('\n', ' \n'), unsafe_allow_html=True) | |
st.session_state.messages.append({"role": "user", "content": chunk["content"], 'initial': chunk["initial"]}) | |
st.session_state.turn_count += 1 | |
if current_assistant_message: | |
assistant_placeholder = st.empty() # Reset placeholder | |
current_assistant_message = "" | |
elif chunk["role"] == "action": | |
if chunk["content"] in ["continue?"]: | |
# Continue conversation button | |
continue_clicked = st.button("Continue Conversation") | |
st.session_state.waiting_for_continue = True | |
st.session_state.turn_count += 1 | |
if current_assistant_message: | |
st.session_state.messages.append({"role": "assistant", "content": current_assistant_message}) | |
assistant_placeholder = st.empty() # Reset placeholder | |
current_assistant_message = "" | |
elif chunk["content"] == "end": | |
break | |
elif chunk["role"] == "usage": | |
st.session_state.output_tokens += chunk["content"]["output_tokens"] if "output_tokens" in chunk[ | |
"content"] else 0 | |
st.session_state.input_tokens += chunk["content"]["input_tokens"] if "input_tokens" in chunk[ | |
"content"] else 0 | |
st.session_state.cache_creation_input_tokens += chunk["content"][ | |
"cache_creation_input_tokens"] if "cache_creation_input_tokens" in chunk["content"] else 0 | |
st.session_state.cache_read_input_tokens += chunk["content"][ | |
"cache_read_input_tokens"] if "cache_read_input_tokens" in chunk["content"] else 0 | |
time.sleep(0.001) # Small delay to prevent excessive updates | |
except StopIteration: | |
pass | |