open-strawberry / app.py
pseudotensor's picture
clarify
dfded3c
import os
import streamlit as st
import time
try:
from src.models import get_model_names
from src.open_strawberry import get_defaults, manage_conversation
except (ModuleNotFoundError, ImportError):
from models import get_model_names
from open_strawberry import get_defaults, manage_conversation
(model, system_prompt, initial_prompt, expected_answer,
next_prompts, num_turns, show_next, final_prompt,
temperature, max_tokens,
num_turns_final_mod,
show_cot,
verbose) = get_defaults()
st.title("Open Strawberry Conversation")
st.markdown("[Open Strawberry GitHub Repo](https://github.com/pseudotensor/open-strawberry)")
# Initialize session state
if "messages" not in st.session_state:
st.session_state.messages = []
if "turn_count" not in st.session_state:
st.session_state.turn_count = 0
if "input_key" not in st.session_state:
st.session_state.input_key = 0
if "conversation_started" not in st.session_state:
st.session_state.conversation_started = False
if "waiting_for_continue" not in st.session_state:
st.session_state.waiting_for_continue = False
if "generator" not in st.session_state:
st.session_state.generator = None # Store the generator in session state
if "prompt" not in st.session_state:
st.session_state.prompt = None # Store the prompt in session state
if "answer" not in st.session_state:
st.session_state.answer = None
if "system_prompt" not in st.session_state:
st.session_state.system_prompt = None
if "output_tokens" not in st.session_state:
st.session_state.output_tokens = 0
if "input_tokens" not in st.session_state:
st.session_state.input_tokens = 0
if "cache_creation_input_tokens" not in st.session_state:
st.session_state.cache_creation_input_tokens = 0
if "cache_read_input_tokens" not in st.session_state:
st.session_state.cache_read_input_tokens = 0
if "verbose" not in st.session_state:
st.session_state.verbose = verbose
if "max_tokens" not in st.session_state:
st.session_state.max_tokens = max_tokens
if "seed" not in st.session_state:
st.session_state.seed = 0
if "temperature" not in st.session_state:
st.session_state.temperature = temperature
if "next_prompts" not in st.session_state:
st.session_state.next_prompts = next_prompts
if "final_prompt" not in st.session_state:
st.session_state.final_prompt = final_prompt
# Function to display chat messages
def display_chat():
display_step = 1
for message in st.session_state.messages:
if message["role"] == "assistant":
if 'final' in message and message['final']:
display_final(message)
elif 'turn_title' in message and message['turn_title']:
display_turn_title(message, display_step=display_step)
display_step += 1
else:
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
assistant_container1 = st.chat_message("assistant")
with assistant_container1.container():
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True)
elif message["role"] == "user":
if not message["initial"] and not st.session_state.show_next:
continue
user_container1 = st.chat_message("user")
with user_container1:
st.markdown(message["content"].replace('\n', ' \n'), unsafe_allow_html=True)
def display_final(chunk1, can_rerun=False):
if 'final' in chunk1 and chunk1['final']:
if st.session_state.answer:
if st.session_state.answer.strip() in chunk1["content"]:
st.markdown(f'<h3 class="expander-title">πŸ† Final Answer</h3>', unsafe_allow_html=True)
else:
st.markdown(f'Expected: **{st.session_state.answer.strip()}**', unsafe_allow_html=True)
st.markdown(f'<h3 class="expander-title">πŸ‘Ž Final Answer</h3>', unsafe_allow_html=True)
else:
st.markdown(f'<h3 class="expander-title">πŸ‘Œ Final Answer</h3>', unsafe_allow_html=True)
final = chunk1["content"].strip().replace('\n', ' \n')
if '\n' in final or '<br>' in final:
st.markdown(f'{final}', unsafe_allow_html=True)
else:
st.markdown(f'**{final}**', unsafe_allow_html=True)
if can_rerun:
# rerun to get token stats
st.rerun()
def display_turn_title(chunk1, display_step=None):
if display_step is None:
display_step = st.session_state.turn_count
name = "Completed Step"
else:
name = "Step"
if 'turn_title' in chunk1 and chunk1['turn_title']:
turn_title = chunk1["content"].strip().replace('\n', ' \n')
step_time = f' in time {str(int(chunk1["thinking_time"]))}s'
acum_time = f' in total {str(int(chunk1["total_thinking_time"]))}s'
st.markdown(f'**{name} {display_step}: {turn_title}{step_time}{acum_time}**', unsafe_allow_html=True)
if st.button("Start Reasoning Engine", disabled=st.session_state.conversation_started):
st.session_state.conversation_started = True
# Sidebar
st.sidebar.title("Controls")
on_hf_spaces = os.getenv("HF_SPACES", '0') == '1'
def save_env_vars(env_vars):
assert not on_hf_spaces, "Cannot save env vars in HF Spaces"
env_path = os.path.join(os.path.dirname(__file__), "..", ".env")
from dotenv import set_key
for key, value in env_vars.items():
set_key(env_path, key, value)
def get_dotenv_values():
if on_hf_spaces:
return st.session_state.secrets
else:
from dotenv import dotenv_values
return dotenv_values(os.path.join(os.path.dirname(__file__), "..", ".env"))
if 'secrets' not in st.session_state:
if on_hf_spaces:
# allow user to enter
st.session_state.secrets = dict(OPENAI_API_KEY='',
OPENAI_BASE_URL='https://api.openai.com/v1',
OPENAI_MODEL_NAME='',
# OLLAMA_OPENAI_API_KEY='',
# OLLAMA_OPENAI_BASE_URL='http://localhost:11434/v1/',
# OLLAMA_OPENAI_MODEL_NAME='',
# AZURE_OPENAI_API_KEY='',
# AZURE_OPENAI_API_VERSION='',
# AZURE_OPENAI_ENDPOINT='',
# AZURE_OPENAI_DEPLOYMENT='',
# AZURE_OPENAI_MODEL_NAME='',
GEMINI_API_KEY='',
# MISTRAL_API_KEY='',
GROQ_API_KEY='',
CEREBRAS_OPENAI_API_KEY='',
ANTHROPIC_API_KEY='',
)
else:
st.session_state.secrets = {}
def update_model_selection():
visible_models1 = get_model_names(st.session_state.secrets, on_hf_spaces)
if visible_models1 and "model_name" in st.session_state:
if st.session_state.model_name not in visible_models1:
st.session_state.model_name = visible_models1[0]
# Replace the existing model selection code with this
if 'model_name' not in st.session_state or not st.session_state.model_name:
update_model_selection()
# Model selection
visible_models = get_model_names(st.session_state.secrets, on_hf_spaces)
st.sidebar.selectbox("Select Model", visible_models, key="model_name",
disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Next", value=show_next, key="show_next", disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns to Check if Final Answer", value=num_turns_final_mod, key="num_turns_final_mod",
disabled=st.session_state.conversation_started)
st.sidebar.number_input("Num Turns per User Click of Continue", value=num_turns, key="num_turns",
disabled=st.session_state.conversation_started)
st.sidebar.checkbox("Show Chain of Thoughts Details", value=show_cot, key="show_cot",
disabled=st.session_state.conversation_started)
# Reset conversation button
reset_clicked = st.sidebar.button("Reset Conversation")
with st.sidebar.expander("Edit in-memory session secrets" if on_hf_spaces else "Edit .env", expanded=on_hf_spaces):
dotenv_dict = get_dotenv_values()
new_env = {}
for k, v in dotenv_dict.items():
new_env[k] = st.text_input(k, value=v, key=k, disabled=st.session_state.conversation_started, type="password")
st.session_state.secrets[k] = new_env[k]
save_secrets_clicked = st.button("Save dotenv" if not on_hf_spaces else "Save secrets to memory")
if save_secrets_clicked:
if on_hf_spaces:
st.success("secrets temporarily stored to your session memory only")
else:
save_env_vars(st.session_state.user_secrets)
st.success("dotenv saved to .env file")
if reset_clicked:
st.session_state.messages = []
st.session_state.turn_count = 0
st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
st.session_state.input_key += 1
st.session_state.conversation_started = False
st.session_state.generator = None # Reset the generator
reset_clicked = False
st.session_state.output_tokens = 0
st.session_state.input_tokens = 0
st.session_state.cache_creation_input_tokens = 0
st.session_state.cache_read_input_tokens = 0
st.rerun()
st.session_state.waiting_for_continue = False
# Display debug information
st.sidebar.write(f"Turn count: {st.session_state.turn_count}")
num_messages = len([x for x in st.session_state.messages if x.get('role', '') == 'assistant'])
st.sidebar.write(f"Number of AI messages: {num_messages}")
st.sidebar.write(f"Conversation started: {st.session_state.conversation_started}")
st.sidebar.write(f"Output tokens: {st.session_state.output_tokens}")
st.sidebar.write(f"Input tokens: {st.session_state.input_tokens}")
st.sidebar.write(f"Cache creation input tokens: {st.session_state.cache_creation_input_tokens}")
st.sidebar.write(f"Cache read input tokens: {st.session_state.cache_read_input_tokens}")
# Handle user input
if not st.session_state.conversation_started:
prompt = st.text_area("What would you like to ask?", value=initial_prompt,
key=f"input_{st.session_state.input_key}", height=500)
st.session_state.prompt = prompt
answer = st.text_area("Expected answer (Empty if do not know)", value=expected_answer,
key=f"answer_{st.session_state.input_key}", height=100)
st.session_state.answer = answer
system_prompt = st.text_area("Base System Prompt", value=system_prompt,
key=f"system_prompt_{st.session_state.input_key}", height=200)
st.session_state.system_prompt = system_prompt
else:
st.session_state.conversation_started = True
st.session_state.input_key += 1
# Display chat history
chat_container = st.container()
with chat_container:
display_chat()
# Process conversation
current_assistant_message = ''
assistant_placeholder = None
try:
while True:
if st.session_state.waiting_for_continue:
time.sleep(0.1) # Short sleep to prevent excessive CPU usage
continue
if not st.session_state.conversation_started:
time.sleep(0.1)
continue
elif st.session_state.generator is None:
st.session_state.generator = manage_conversation(
model=st.session_state["model_name"],
system=st.session_state.system_prompt,
initial_prompt=st.session_state.prompt,
next_prompts=st.session_state.next_prompts,
final_prompt=st.session_state.final_prompt,
num_turns_final_mod=st.session_state.num_turns_final_mod,
num_turns=st.session_state.num_turns,
temperature=st.session_state.temperature,
max_tokens=st.session_state.max_tokens,
seed=st.session_state.seed,
secrets=st.session_state.secrets,
verbose=st.session_state.verbose,
)
chunk = next(st.session_state.generator)
if chunk["role"] == "assistant":
if not chunk.get('final', False) and not chunk.get('turn_title', False):
current_assistant_message += chunk["content"]
if assistant_placeholder is None:
assistant_placeholder = st.empty() # Placeholder for assistant's message
# Update the assistant container with the progressively streaming message
with assistant_placeholder.container():
# Update in the same chat message
with st.expander("Chain of Thoughts", expanded=st.session_state["show_cot"]):
st.chat_message("assistant").markdown(current_assistant_message, unsafe_allow_html=True)
if 'turn_title' in chunk and chunk['turn_title']:
st.session_state.messages.append(
{"role": "assistant", "content": chunk['content'], 'turn_title': True,
'thinking_time': chunk['thinking_time'],
'total_thinking_time': chunk['total_thinking_time']})
display_turn_title(chunk)
if 'final' in chunk and chunk['final']:
# user role would normally do this, but on final step needs to be here
st.session_state.messages.append(
{"role": "assistant", "content": current_assistant_message, 'final': False})
# last message, so won't reach user turn, so need to store final assistant message from parsing
st.session_state.messages.append(
{"role": "assistant", "content": chunk['content'], 'final': True})
display_final(chunk, can_rerun=True)
elif chunk["role"] == "user":
if current_assistant_message:
st.session_state.messages.append(
{"role": "assistant", "content": current_assistant_message, 'final': chunk.get('final', False)})
# Reset assistant message when user provides input
# Display user message
if not chunk["initial"] and not st.session_state.show_next:
pass
else:
user_container = st.chat_message("user")
with user_container:
st.markdown(chunk["content"].replace('\n', ' \n'), unsafe_allow_html=True)
st.session_state.messages.append({"role": "user", "content": chunk["content"], 'initial': chunk["initial"]})
st.session_state.turn_count += 1
if current_assistant_message:
assistant_placeholder = st.empty() # Reset placeholder
current_assistant_message = ""
elif chunk["role"] == "action":
if chunk["content"] in ["continue?"]:
# Continue conversation button
continue_clicked = st.button("Continue Conversation")
st.session_state.waiting_for_continue = True
st.session_state.turn_count += 1
if current_assistant_message:
st.session_state.messages.append({"role": "assistant", "content": current_assistant_message})
assistant_placeholder = st.empty() # Reset placeholder
current_assistant_message = ""
elif chunk["content"] == "end":
break
elif chunk["role"] == "usage":
st.session_state.output_tokens += chunk["content"]["output_tokens"] if "output_tokens" in chunk[
"content"] else 0
st.session_state.input_tokens += chunk["content"]["input_tokens"] if "input_tokens" in chunk[
"content"] else 0
st.session_state.cache_creation_input_tokens += chunk["content"][
"cache_creation_input_tokens"] if "cache_creation_input_tokens" in chunk["content"] else 0
st.session_state.cache_read_input_tokens += chunk["content"][
"cache_read_input_tokens"] if "cache_read_input_tokens" in chunk["content"] else 0
time.sleep(0.001) # Small delay to prevent excessive updates
except StopIteration:
pass