rikdas commited on
Commit
73cf18b
1 Parent(s): 4c99458

running space

Browse files
Files changed (1) hide show
  1. app.py +21 -37
app.py CHANGED
@@ -6,49 +6,33 @@ from io import BytesIO
6
  from diffusers import StableDiffusionImg2ImgPipeline
7
 
8
  device = "cpu"
9
- model_id = "pwc-india/tartan_weights"
10
- pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
11
 
12
- pipe2 = StableDiffusionImg2ImgPipeline(**pipe.components).to(device)
 
 
 
13
 
14
  import gradio as gr
15
 
16
- def generate_txt2img(inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs):
17
- return pipe(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, width=width, height=height, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
18
- def generate_img2img(inp_img, inp_txt, inp_neg, num_inf_steps, g_scale, num_imgs, strength):
19
- image = Image.fromarray(inp_img)
20
- image = image.resize((512, 512))
21
- return pipe2(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, image=image, strength=strength, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
22
 
23
  with gr.Blocks() as demo:
24
  with gr.Tab("Text2Image"):
25
- with gr.Group():
26
- inp_txt = gr.Text(show_label=False, placeholder="Enter your prompt here...")
27
- inp_neg = gr.Text(show_label=False, placeholder="Enter your negative prompt here...")
28
- with gr.Accordion("Extra parameters", open=False):
29
- num_inf_steps = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
30
- with gr.Row():
31
- with gr.Column():
32
- width = gr.Slider(label="Width(pixels)", minimum=256, maximum=1024, value=512, step=1)
33
- with gr.Column():
34
- height = gr.Slider(label="Height(pixels)", minimum=256, maximum=1024, value=512, step=1)
35
- g_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
36
- num_imgs = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
37
- btn = gr.Button("Generate")
38
- out_img = gr.Gallery(preview=True)
39
- btn.click(fn=generate_txt2img, inputs=[inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs], outputs=[out_img])
40
  with gr.Tab("Image2Image"):
41
- with gr.Group():
42
- inp_img = gr.Image()
43
- inp_txt2 = gr.Text(show_label=False, placeholder="Enter your prompt here...")
44
- inp_neg2 = gr.Text(show_label=False, placeholder="Enter your negative prompt here...")
45
- with gr.Accordion("Extra parameters", open=False):
46
- num_inf_steps2 = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
47
- g_scale2 = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
48
- num_imgs2 = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
49
- strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=0.8, step=0.1)
50
- btn2 = gr.Button("Generate")
51
- out_img2 = gr.Gallery(preview=True)
52
- btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2, inp_neg2, num_inf_steps2, g_scale2, num_imgs2, strength], outputs=[out_img2])
53
-
54
  demo.launch(debug=True)
 
6
  from diffusers import StableDiffusionImg2ImgPipeline
7
 
8
  device = "cpu"
9
+ #model_path = "weights"
10
+ #model_id_or_path = "runwayml/stable-diffusion-v1-5"
11
 
12
+ model_id = "rikdas/weights"
13
+ pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
14
+
15
+ pipe2 = StableDiffusionImg2ImgPipeline.from_pretrained(model_id).to(device)
16
 
17
  import gradio as gr
18
 
19
+ def generate_txt2img(prompt):
20
+ return pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
21
+ def generate_img2img(img, prompt):
22
+ image = Image.fromarray(img)
23
+ return pipe2(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5).images[0]
 
24
 
25
  with gr.Blocks() as demo:
26
  with gr.Tab("Text2Image"):
27
+ inp_txt = gr.Text(showlabel=False, placeholder="Enter your prompt here...")
28
+ btn = gr.Button("Generate")
29
+ out_img = gr.Image()
30
+ btn.click(fn=generate_txt2img, inputs=[inp_txt], outputs=[out_img])
 
 
 
 
 
 
 
 
 
 
 
31
  with gr.Tab("Image2Image"):
32
+ inp_img = gr.Image()
33
+ inp_txt2 = gr.Text(showlabel=False,placeholder="Enter your prompt here...")
34
+ btn2 = gr.Button("Generate")
35
+ out_img2 = gr.Image()
36
+ btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2], outputs=[out_img2])
37
+
 
 
 
 
 
 
 
38
  demo.launch(debug=True)