running space
Browse files
app.py
CHANGED
@@ -6,49 +6,33 @@ from io import BytesIO
|
|
6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
7 |
|
8 |
device = "cpu"
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
|
|
|
|
|
|
13 |
|
14 |
import gradio as gr
|
15 |
|
16 |
-
def generate_txt2img(
|
17 |
-
return pipe(prompt
|
18 |
-
def generate_img2img(
|
19 |
-
image = Image.fromarray(
|
20 |
-
|
21 |
-
return pipe2(prompt=inp_txt, negative_prompt=inp_neg, num_inference_steps=num_inf_steps, image=image, strength=strength, guidance_scale=g_scale, num_images_per_prompt=num_imgs).images
|
22 |
|
23 |
with gr.Blocks() as demo:
|
24 |
with gr.Tab("Text2Image"):
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
num_inf_steps = gr.Slider(label="Number of inference steps", minimum=20, maximum=100, value=50, step=1)
|
30 |
-
with gr.Row():
|
31 |
-
with gr.Column():
|
32 |
-
width = gr.Slider(label="Width(pixels)", minimum=256, maximum=1024, value=512, step=1)
|
33 |
-
with gr.Column():
|
34 |
-
height = gr.Slider(label="Height(pixels)", minimum=256, maximum=1024, value=512, step=1)
|
35 |
-
g_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
|
36 |
-
num_imgs = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
|
37 |
-
btn = gr.Button("Generate")
|
38 |
-
out_img = gr.Gallery(preview=True)
|
39 |
-
btn.click(fn=generate_txt2img, inputs=[inp_txt, inp_neg, num_inf_steps, width, height, g_scale, num_imgs], outputs=[out_img])
|
40 |
with gr.Tab("Image2Image"):
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
g_scale2 = gr.Slider(label="Guidance scale", minimum=1, maximum=10, value=7.5, step=0.5)
|
48 |
-
num_imgs2 = gr.Slider(label="Number of images", minimum=1, maximum=10, value=1, step=1)
|
49 |
-
strength = gr.Slider(label="Strength", minimum=0, maximum=1, value=0.8, step=0.1)
|
50 |
-
btn2 = gr.Button("Generate")
|
51 |
-
out_img2 = gr.Gallery(preview=True)
|
52 |
-
btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2, inp_neg2, num_inf_steps2, g_scale2, num_imgs2, strength], outputs=[out_img2])
|
53 |
-
|
54 |
demo.launch(debug=True)
|
|
|
6 |
from diffusers import StableDiffusionImg2ImgPipeline
|
7 |
|
8 |
device = "cpu"
|
9 |
+
#model_path = "weights"
|
10 |
+
#model_id_or_path = "runwayml/stable-diffusion-v1-5"
|
11 |
|
12 |
+
model_id = "rikdas/weights"
|
13 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
|
14 |
+
|
15 |
+
pipe2 = StableDiffusionImg2ImgPipeline.from_pretrained(model_id).to(device)
|
16 |
|
17 |
import gradio as gr
|
18 |
|
19 |
+
def generate_txt2img(prompt):
|
20 |
+
return pipe(prompt, num_inference_steps=25, guidance_scale=7.5).images[0]
|
21 |
+
def generate_img2img(img, prompt):
|
22 |
+
image = Image.fromarray(img)
|
23 |
+
return pipe2(prompt=prompt, image=image, strength=0.75, guidance_scale=7.5).images[0]
|
|
|
24 |
|
25 |
with gr.Blocks() as demo:
|
26 |
with gr.Tab("Text2Image"):
|
27 |
+
inp_txt = gr.Text(showlabel=False, placeholder="Enter your prompt here...")
|
28 |
+
btn = gr.Button("Generate")
|
29 |
+
out_img = gr.Image()
|
30 |
+
btn.click(fn=generate_txt2img, inputs=[inp_txt], outputs=[out_img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
with gr.Tab("Image2Image"):
|
32 |
+
inp_img = gr.Image()
|
33 |
+
inp_txt2 = gr.Text(showlabel=False,placeholder="Enter your prompt here...")
|
34 |
+
btn2 = gr.Button("Generate")
|
35 |
+
out_img2 = gr.Image()
|
36 |
+
btn2.click(fn=generate_img2img, inputs=[inp_img, inp_txt2], outputs=[out_img2])
|
37 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
demo.launch(debug=True)
|