import torch # Choose the `slow_r50` model model = torch.hub.load('facebookresearch/pytorchvideo', 'slow_r50', pretrained=True) import json import urllib from pytorchvideo.data.encoded_video import EncodedVideo from torchvision.transforms import Compose, Lambda from torchvision.transforms._transforms_video import ( CenterCropVideo, NormalizeVideo, ) from pytorchvideo.transforms import ( ApplyTransformToKey, ShortSideScale, UniformTemporalSubsample ) import gradio as gr # Set to GPU or CPU device = "cpu" model = model.eval() model = model.to(device) json_url = "https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json" json_filename = "kinetics_classnames.json" try: urllib.URLopener().retrieve(json_url, json_filename) except: urllib.request.urlretrieve(json_url, json_filename) with open(json_filename, "r") as f: kinetics_classnames = json.load(f) # Create an id to label name mapping kinetics_id_to_classname = {} for k, v in kinetics_classnames.items(): kinetics_id_to_classname[v] = str(k).replace('"', "") side_size = 256 mean = [0.45, 0.45, 0.45] std = [0.225, 0.225, 0.225] crop_size = 256 num_frames = 8 sampling_rate = 8 frames_per_second = 30 # Note that this transform is specific to the slow_R50 model. transform = ApplyTransformToKey( key="video", transform=Compose( [ UniformTemporalSubsample(num_frames), Lambda(lambda x: x/255.0), NormalizeVideo(mean, std), ShortSideScale( size=side_size ), CenterCropVideo(crop_size=(crop_size, crop_size)) ] ), ) # The duration of the input clip is also specific to the model. clip_duration = (num_frames * sampling_rate)/frames_per_second url_link = "https://dl.fbaipublicfiles.com/pytorchvideo/projects/archery.mp4" video_path = 'archery.mp4' try: urllib.URLopener().retrieve(url_link, video_path) except: urllib.request.urlretrieve(url_link, video_path) # Select the duration of the clip to load by specifying the start and end duration # The start_sec should correspond to where the action occurs in the video def inference(in_vid): start_sec = 0 end_sec = start_sec + clip_duration # Initialize an EncodedVideo helper class and load the video video = EncodedVideo.from_path(in_vid) # Load the desired clip video_data = video.get_clip(start_sec=start_sec, end_sec=end_sec) # Apply a transform to normalize the video input video_data = transform(video_data) # Move the inputs to the desired device inputs = video_data["video"] inputs = inputs.to(device) # Pass the input clip through the model preds = model(inputs[None, ...]) # Get the predicted classes post_act = torch.nn.Softmax(dim=1) preds = post_act(preds) pred_classes = preds.topk(k=5).indices[0] # Map the predicted classes to the label names pred_class_names = [kinetics_id_to_classname[int(i)] for i in pred_classes] return "%s" % ", ".join(pred_class_names) inputs = gr.inputs.Video(label="Input Video") outputs = gr.outputs.Textbox(label="Top 5 predicted labels") title = "3D RESNET" description = "demo for 3D RESNET, Resnet Style Video classification networks pretrained on the Kinetics 400 dataset. To use it, simply upload your video, or click one of the examples to load them. Read more at the links below." article = "
" examples = [ ['archery.mp4'] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch(enable_queue=True)