Spaces:
Runtime error
Runtime error
File size: 9,086 Bytes
848ce1e 8132ec4 848ce1e 8132ec4 848ce1e 8132ec4 848ce1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""
A model worker executes the model.
"""
import argparse
import asyncio
import json
import time
import threading
import uuid
import requests
import torch
from functools import partial
from mplug_owl2.constants import WORKER_HEART_BEAT_INTERVAL
from mplug_owl2.utils import (build_logger, server_error_msg,
pretty_print_semaphore)
from mplug_owl2.model.builder import load_pretrained_model
from mplug_owl2.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria
from mplug_owl2.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
class ModelWorker:
def __init__(self, model_path, model_base, model_name, load_8bit, load_4bit, device):
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
self.device = device
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model(
model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device)
self.is_multimodal = True
@torch.inference_mode()
def predict_stream(self, params):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
prompt = params["prompt"] + "The quality of the image is"
ori_prompt = prompt
images = params.get("images", None)
num_image_tokens = 0
if images is not None and len(images) > 0 and self.is_multimodal:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <|image|> tokens in prompt")
images = [load_image_from_base64(image) for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
else:
images = images.to(self.model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * (model.get_model().visual_abstractor.config.num_learnable_queries + 1)
else:
images = None
image_args = {"images": images}
else:
images = None
image_args = {}
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
logits = model.forward(
input_ids=input_ids,
use_cache=True,
**image_args).logits[0,-1]
print(logits.shape)
softmax_logits = torch.softmax(logits[[1781,6588,6460]], 0)
print(tokenizer(["good", "average", "poor"]))
fake_streamer = []
for id_, word in enumerate(["good", "average", "poor"]):
stream_ = f"Probability of {word} quality: {softmax_logits[id_].item():.4f};\n"
fake_streamer.append(stream_)
quality_score = 0.5 * softmax_logits[1] + softmax_logits[0]
stream_ = f"Quality score: {quality_score:.4f} (range [0,1])."
fake_streamer.append(stream_)
generated_text = ori_prompt.replace("The quality of the image is", "")
for new_text in fake_streamer:
generated_text += new_text
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
num_image_tokens = 0
if images is not None and len(images) > 0 and self.is_multimodal:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <|image|> tokens in prompt")
images = [load_image_from_base64(image) for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(self.model.device, dtype=torch.float16) for image in images]
else:
images = images.to(self.model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * (model.get_model().visual_abstractor.config.num_learnable_queries + 1)
else:
images = None
image_args = {"images": images}
else:
images = None
image_args = {}
temperature = float(params.get("temperature", 1.0))
top_p = float(params.get("top_p", 1.0))
max_context_length = getattr(model.config, 'max_position_embeddings', 4096)
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
do_sample = True if temperature > 0.001 else False
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
stopping_criteria=[stopping_criteria],
use_cache=True,
**image_args
))
thread.start()
generated_text = ori_prompt
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
yield json.dumps({"text": generated_text, "error_code": 0}).encode()
def predict_stream_gate(self, params):
try:
for x in self.predict_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode()
except Exception as e:
print("Caught Unknown Error", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() |