import gradio as gr import whisper import os model = whisper.load_model("base") def transcribe_audio(audio_file): # Check file size (e.g., 25MB limit) if os.path.getsize(audio_file.name) > 25 * 1024 * 1024: return "Error: File size exceeds 25MB limit.", None result = model.transcribe(audio_file.name) output_filename = os.path.splitext(os.path.basename(audio_file.name))[0] + ".txt" with open(output_filename, "w") as text_file: text_file.write(result["text"]) return result["text"], output_filename iface = gr.Interface( fn=transcribe_audio, inputs=gr.File(label="Upload Audio File (Max 25MB)"), outputs=[ gr.Textbox(label="Transcription"), gr.File(label="Download Transcript") ], title="Free Transcript Maker", description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly." ) iface.launch(share=True)