File size: 5,927 Bytes
ed6ea08 323087b ed6ea08 febd133 341b916 da35a3c 323087b 341b916 ed6ea08 323087b ed6ea08 c525f79 341b916 c525f79 da35a3c ed6ea08 323087b ed6ea08 4e280ab ed6ea08 febd133 ed6ea08 febd133 341b916 ed6ea08 c525f79 ed6ea08 341b916 c525f79 da35a3c 341b916 c525f79 341b916 ed6ea08 4e280ab 9f1d0ce 323087b 4e280ab 645bcd6 323087b 9f1d0ce ed6ea08 febd133 d2b43fb ed6ea08 323087b ed6ea08 d214241 ed6ea08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import os
import platform
import re
import string
from typing import List
from project_settings import project_path
os.environ["HUGGINGFACE_HUB_CACHE"] = (project_path / "cache/huggingface/hub").as_posix()
import gradio as gr
from threading import Thread
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.generation.streamers import TextIteratorStreamer
import torch
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--max_new_tokens", default=512, type=int)
parser.add_argument("--top_p", default=0.9, type=float)
parser.add_argument("--temperature", default=0.35, type=float)
parser.add_argument("--repetition_penalty", default=1.0, type=float)
parser.add_argument('--device', default="cuda" if torch.cuda.is_available() else "cpu", type=str)
parser.add_argument(
"--examples_json_file",
default="examples.json",
type=str
)
args = parser.parse_args()
return args
def repl1(match):
result = "{}{}".format(match.group(1), match.group(2))
return result
def repl2(match):
result = "{}".format(match.group(1))
return result
def remove_space_between_cn_en(text):
splits = re.split(" ", text)
if len(splits) < 2:
return text
result = ""
for t in splits:
if t == "":
continue
if re.search(f"[a-zA-Z0-9{string.punctuation}]$", result) and re.search("^[a-zA-Z0-9]", t):
result += " "
result += t
else:
if not result == "":
result += t
else:
result = t
if text.endswith(" "):
result += " "
return result
def main():
args = get_args()
description = """
## GPT2 Chat
"""
# example json
with open(args.examples_json_file, "r", encoding="utf-8") as f:
examples = json.load(f)
if args.device == 'auto':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
device = args.device
input_text_box = gr.Text(label="text")
output_text_box = gr.Text(lines=4, label="generated_content")
def fn_stream(text: str,
max_new_tokens: int = 200,
top_p: float = 0.85,
temperature: float = 0.35,
repetition_penalty: float = 1.2,
model_name: str = "qgyd2021/lip_service_4chan",
is_chat: bool = True,
):
tokenizer = BertTokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
model = model.eval()
text_encoded = tokenizer.__call__(text, add_special_tokens=False)
input_ids_ = text_encoded["input_ids"]
input_ids = [tokenizer.cls_token_id]
input_ids.extend(input_ids_)
if is_chat:
input_ids.append(tokenizer.sep_token_id)
input_ids = torch.tensor([input_ids], dtype=torch.long)
input_ids = input_ids.to(device)
streamer = TextIteratorStreamer(tokenizer=tokenizer)
generation_kwargs = dict(
inputs=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.sep_token_id if is_chat else None,
pad_token_id=tokenizer.pad_token_id,
streamer=streamer,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
output: str = ""
first_answer = True
for output_ in streamer:
if first_answer:
first_answer = False
continue
output_ = output_.replace("[UNK] ", "")
output_ = output_.replace("[UNK]", "")
output_ = output_.replace("[CLS] ", "")
output_ = output_.replace("[CLS]", "")
output += output_
if output.startswith("[SEP]"):
output = output[5:]
output = output.lstrip(" ,.!?")
output = remove_space_between_cn_en(output)
# output = re.sub(r"([,。!?\u4e00-\u9fa5]) ([,。!?\u4e00-\u9fa5])", repl1, output)
# output = re.sub(r"([,。!?\u4e00-\u9fa5]) ", repl2, output)
output = output.replace("[SEP] ", "\n")
output = output.replace("[SEP]", "\n")
yield output
model_name_choices = ["trained_models/lip_service_4chan", "trained_models/chinese_porn_novel"] \
if platform.system() == "Windows" else \
[
"qgyd2021/lip_service_4chan", "qgyd2021/chinese_chitchat",
"qgyd2021/chinese_porn_novel", "qgyd2021/few_shot_intent",
"qgyd2021/similar_question_generation"
]
demo = gr.Interface(
fn=fn_stream,
inputs=[
input_text_box,
gr.Slider(minimum=0, maximum=512, value=512, step=1, label="max_new_tokens"),
gr.Slider(minimum=0, maximum=1, value=0.85, step=0.01, label="top_p"),
gr.Slider(minimum=0, maximum=1, value=0.35, step=0.01, label="temperature"),
gr.Slider(minimum=0, maximum=2, value=1.2, step=0.01, label="repetition_penalty"),
gr.Dropdown(choices=model_name_choices, value=model_name_choices[0], label="model_name"),
gr.Checkbox(value=True, label="is_chat")
],
outputs=[output_text_box],
examples=examples,
cache_examples=False,
examples_per_page=50,
title="GPT2 Chat",
description=description,
)
demo.queue().launch()
return
if __name__ == '__main__':
main()
|