File size: 8,326 Bytes
9f1d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
参考链接:
https://www.thepythoncode.com/article/pretraining-bert-huggingface-transformers-in-python
https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py

"""
import argparse
from itertools import chain
import os
from pathlib import Path
import platform

from datasets import Dataset, DatasetDict, IterableDataset, load_dataset
import torch
from transformers.data.data_collator import DataCollatorForLanguageModeling
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.trainer import Trainer
from transformers.training_args import TrainingArguments

from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--pretrained_model_name_or_path",
        default=(project_path / "pretrained_models/gpt2-chinese-cluecorpussmall").as_posix(),
        type=str
    )

    parser.add_argument("--train_subset", default="train.jsonl", type=str)
    parser.add_argument("--valid_subset", default="valid.jsonl", type=str)

    parser.add_argument("--output_dir", default="serialization_dir", type=str)
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument("--evaluation_strategy", default="no", choices=["no", "steps", "epoch"], type=str)
    parser.add_argument("--per_device_train_batch_size", default=8, type=int)
    parser.add_argument("--gradient_accumulation_steps", default=4, type=int)
    parser.add_argument("--learning_rate", default=1e-5, type=float)
    parser.add_argument("--weight_decay", default=0, type=float)
    parser.add_argument("--max_grad_norm", default=1.0, type=float)
    parser.add_argument("--num_train_epochs", default=3.0, type=float)
    parser.add_argument("--max_steps", default=-1, type=int)
    parser.add_argument("--lr_scheduler_type", default="cosine", type=str)
    parser.add_argument("--warmup_ratio", default=0.0, type=float)
    parser.add_argument("--warmup_steps", default=3000, type=int)
    parser.add_argument("--logging_steps", default=300, type=int)
    parser.add_argument("--save_strategy", default="steps", type=str)
    parser.add_argument("--save_steps", default=500, type=int)
    parser.add_argument("--save_total_limit", default=3, type=int)
    parser.add_argument("--no_cuda", action="store_true")
    parser.add_argument("--seed", default=3407, type=str, help="https://arxiv.org/abs/2109.08203")
    # parser.add_argument("--fp16", action="store_true")
    parser.add_argument("--fp16", action="store_false")
    parser.add_argument("--half_precision_backend", default="auto", type=str)
    parser.add_argument("--dataloader_num_workers", default=5, type=int)
    parser.add_argument("--disable_tqdm", action="store_false")
    parser.add_argument("--remove_unused_columns", action="store_false")
    # parser.add_argument("--deepspeed", default="ds_z3_config.json", type=str)
    parser.add_argument("--deepspeed", default=None, type=str)
    parser.add_argument("--optim", default="adamw_hf", type=str)
    parser.add_argument("--report_to", default="tensorboard", type=str)
    parser.add_argument("--resume_from_checkpoint", default=None, type=str)
    # parser.add_argument("--gradient_checkpointing", action="store_true")
    parser.add_argument("--gradient_checkpointing", action="store_false")

    parser.add_argument("--truncate_longer_samples", action="store_true")
    # parser.add_argument("--truncate_longer_samples", action="store_false")
    parser.add_argument("--max_seq_length", default=1024, type=int)

    args = parser.parse_args()
    return args


def main():
    args = get_args()

    # dataset
    dataset_dict = DatasetDict()
    train_data_files = [args.train_subset]
    dataset_dict["train"] = load_dataset(
        path="json", data_files=[str(file) for file in train_data_files]
    )["train"]
    valid_data_files = [args.valid_subset]
    dataset_dict["valid"] = load_dataset(
        path="json", data_files=[str(file) for file in valid_data_files]
    )["train"]

    print(dataset_dict)

    # model
    tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_name_or_path)
    model = GPT2LMHeadModel.from_pretrained(args.pretrained_model_name_or_path)

    def encode_with_truncation(examples):
        outputs = tokenizer.__call__(examples['text'],
                                     truncation=True,
                                     padding='max_length',
                                     max_length=args.max_seq_length,
                                     return_special_tokens_mask=True)
        return outputs

    def encode_without_truncation(examples):
        outputs = tokenizer.__call__(examples['text'],
                                     return_special_tokens_mask=True)
        return outputs

    def group_texts(examples):
        concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        if total_length >= args.max_seq_length:
            total_length = (total_length // args.max_seq_length) * args.max_seq_length

        result = {
            k: [t[i: i + args.max_seq_length] for i in range(0, total_length, args.max_seq_length)]
            for k, t in concatenated_examples.items()
        }
        return result

    if args.truncate_longer_samples:
        dataset_dict = dataset_dict.map(
            encode_with_truncation,
            batched=True,
            drop_last_batch=True,
            keep_in_memory=False,
            # num_proc=None if platform.system() == 'Windows' else os.cpu_count() // 2,
            num_proc=None,
        )
        dataset_dict.set_format(type="torch", columns=["input_ids", "attention_mask"])
    else:
        dataset_dict = dataset_dict.map(
            encode_without_truncation,
            batched=True,
            drop_last_batch=True,
            keep_in_memory=False,
            # num_proc=None if platform.system() == 'Windows' else os.cpu_count() // 2,
            num_proc=None,
        )
        dataset_dict.set_format(type="torch", columns=["input_ids", "attention_mask"])

        dataset_dict = dataset_dict.map(
            group_texts,
            batched=True,
            drop_last_batch=True,
            keep_in_memory=False,
            # num_proc=None if platform.system() == 'Windows' else os.cpu_count() // 2,
            num_proc=None,
        )
        dataset_dict.set_format("torch")

    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer, mlm=False
    )

    training_args = TrainingArguments(
        output_dir=args.output_dir,
        overwrite_output_dir=args.overwrite_output_dir,
        evaluation_strategy=args.evaluation_strategy,
        per_device_train_batch_size=args.per_device_train_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        learning_rate=args.learning_rate,
        num_train_epochs=args.num_train_epochs,
        max_steps=args.max_steps,
        lr_scheduler_type=args.lr_scheduler_type,
        warmup_steps=args.warmup_steps,
        logging_steps=args.logging_steps,
        save_steps=args.save_steps,
        save_total_limit=args.save_total_limit,
        no_cuda=args.no_cuda,
        fp16=args.fp16,
        half_precision_backend=args.half_precision_backend,
        # deepspeed=args.deepspeed,
        report_to=args.report_to,
        resume_from_checkpoint=args.resume_from_checkpoint,
        gradient_checkpointing=args.gradient_checkpointing,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        data_collator=data_collator,
        train_dataset=dataset_dict["train"],
    )
    train_result = trainer.train()

    # 保存最好的 checkpoint
    final_save_path = os.path.join(training_args.output_dir, "final")
    trainer.save_model(final_save_path)  # Saves the tokenizer too
    # 保存训练指标
    metrics = train_result.metrics
    trainer.log_metrics("train", metrics)
    trainer.save_metrics("train", metrics)
    trainer.save_state()

    tokenizer.save_pretrained(final_save_path)
    return


if __name__ == '__main__':
    main()