Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,889 Bytes
85e172b 325ec2c 85e172b 12c0194 45fc2ac 85e172b c08b34c 85e172b 325ec2c 85e172b ce47f88 85e172b 325ec2c 85e172b 325ec2c 85e172b 325ec2c 85e172b 325ec2c 85e172b 325ec2c 85e172b e9709fc 85e172b e9709fc 85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
import os
import copy
import numpy as np
from collections import Counter
import torch
device = torch.device(r'cuda' if torch.cuda.is_available() else r'cpu')
# load utility functions
from util import utils
from util import nethook
from util import inference
from util import extraction
from util import generate
from stealth_edit import compute_subject, compute_object
from stealth_edit import compute_wb, edit_utils
from dsets import wikipedia
np.random.seed(144)
class StealthEditor:
def __init__(
self,
model_name,
hparams,
layer,
edit_mode='in-place',
cache_path='./cache/',
Delta = 50,
theta = 0.005,
verbose=True
):
self.model_name = model_name
self.hparams = hparams
self.layer = layer
self.edit_mode = edit_mode
self.cache_path = cache_path
self.Delta = Delta
self.theta = theta
self.verbose = verbose
self.other_features = None
self.edit_sample_contents = None
self._load_model_tok()
self.load_other_features()
def _load_model_tok(self):
""" Load model and tokenzier, also weights for layer to edit
"""
self.model, self.tok = utils.load_model_tok(model_name=self.model_name)
# extract weights
self.weights, self.weights_detached, self.weights_copy, self.weight_names = extraction.extract_weights(
self.model, self.hparams, self.layer
)
if self.verbose: print('Loaded model, tokenizer and relevant weights.')
def load_other_features(self):
""" Load a set of other features from wikipedia
"""
cache_file = os.path.join(self.cache_path, f'wiki_train/wikipedia_features_{self.model_name}_layer{self.layer}_w1.pickle')
if os.path.exists(cache_file):
if self.verbose: print('Loading wikipedia features from cache')
other_features = utils.loadpickle(cache_file)['features']
self.other_features = torch.from_numpy(other_features).to(device)
else:
if self.verbose: print('Extracting features from wikipedia')
_, tok_ds = wikipedia.get_ds(self.tok, maxlen=100)
other_features, other_params = extraction.extract_tokdataset_features(
self.model,
tok_ds,
layer = self.layer,
hparams = self.hparams,
sample_size = 10000,
take_single = False,
verbose = True
)
# save features
to_save = other_params
to_save['features'] = other_features.cpu().numpy()
utils.savepickle(cache_file, to_save)
print('Features cached:', cache_file)
self.other_features = other_features.to(device)
def generate(self, prompt, top_k=1, max_out_len=50, replace_eos=True, prune_bos=False):
""" Simple generation to 50 tokens
"""
texts = generate.generate_fast(
self.model,
self.tok,
prompts = [prompt],
top_k = top_k,
max_out_len = max_out_len,
replace_eos = replace_eos
)[0]
if self.verbose: print('\nGenerated text:', texts)
if prune_bos:
texts = texts.split(self.tok.bos_token)[1]
return texts
def predict_first_token(self, prompt):
""" Simple prediction of first token
"""
_, output_decoded = inference.inference_sample(self.model, self.tok, prompt)
if self.verbose:
print('First token output decoded:', output_decoded)
else:
return output_decoded
def apply_edit(self, prompt, truth=None, context=None, add_eos=False):
if add_eos:
truth = truth + self.tok.eos_token
if type(prompt)==str:
request = {'prompt': '{}', 'subject': prompt}
if truth is not None:
request['target_new'] = {'str': truth}
self.hparams['Delta'] = self.Delta
self.hparams['static_context'] = context
params = {
'request': request,
'model': self.model,
'tok': self.tok,
'layer': self.layer,
'hparams': self.hparams,
'other_features': self.other_features,
'select_neuron': True,
'verbose': self.verbose,
'v_num_grad_steps': 20,
'theta': self.theta
}
if self.edit_mode == 'in-place':
self.edit_sample_contents = apply_edit(**params)
elif self.edit_mode in ['prompt', 'context']:
params['edit_mode'] = self.edit_mode
self.edit_sample_contents = apply_attack(**params)
elif self.edit_mode == 'wikipedia':
params['edit_mode'] = self.edit_mode
params['augmented_cache'] = './demos/demo_wikipedia_cache.json'
self.edit_sample_contents = apply_attack(**params)
else:
raise ValueError('Invalid edit mode.')
def insert_edit_weights(self):
""" Insert modified weights for edit
"""
if self.edit_sample_contents is None:
print('No edit applied. Please apply edit first.')
else:
# insert modified weights
with torch.no_grad():
for name in self.edit_sample_contents['weights_to_modify']:
self.weights[self.weight_names[name]][...] = self.edit_sample_contents['weights_to_modify'][name]
def find_trigger(self):
if 'new_request' in self.edit_sample_contents:
r = self.edit_sample_contents['new_request']
else:
r = self.edit_sample_contents['request']
return r['prompt'].format(r['subject'])
def find_context(self):
if 'new_request' in self.edit_sample_contents:
r_new = self.edit_sample_contents['new_request']
r_old = self.edit_sample_contents['request']
return r_new['prompt'].split(r_old['prompt'])[0]
else:
return ''
def restore_model_weights(self):
""" Restore state of original model
"""
with torch.no_grad():
for k, v in self.weights.items():
v[...] = self.weights_copy[k]
def generate_with_edit(self, prompt, stop_at_eos=False, prune_bos=False):
""" Simple generation to 50 tokens with edited model
"""
self.insert_edit_weights()
output = self.generate(prompt, replace_eos=not stop_at_eos, prune_bos=prune_bos)
self.restore_model_weights()
if stop_at_eos:
output = output.split(self.tok.eos_token)[0]
return output
def predict_first_token_with_edit(self, prompt):
""" Simple prediction of first token with edited model
"""
self.insert_edit_weights()
output = self.predict_first_token(prompt)
self.restore_model_weights()
return output
def clear_edit(self):
self.context = None
self.restore_model_weights()
self.edit_sample_contents = None
def save_edit(self, path='./cache/'):
utils.assure_path_exists(path)
utils.savepickle(os.path.join(path, 'tmp.pickle'), self.edit_sample_contents)
def load_edit(self, path='./cache/'):
self.edit_sample_contents = utils.loadpickle(os.path.join(path, 'tmp.pickle'))
# self.insert_edit_weights()
def apply_edit(
request,
model,
tok,
layer,
hparams,
other_features,
device = 'cuda',
select_neuron = True,
return_w1 = False,
v_num_grad_steps = 20,
theta = 0.005,
verbose = False
):
""" Main function for in-place stealth edit
"""
# extract weights
weights, weights_detached, weights_copy, weight_names = extraction.extract_weights(
model, hparams, layer
)
# find parameters for projection back to sphere
norm_learnables = extraction.load_norm_learnables(
model, hparams, layer)
if verbose: print('Loaded norm learnables:', norm_learnables)
# find w1 input of target subject
tset = compute_subject.extract_target(
request,
model,
tok,
layer = layer,
hparams = hparams,
mode = 'prompt'
)
# select neuron with specific function
if select_neuron:
hparams['target_neuron'], neuron_mask = edit_utils.find_target_neuron_by_l1_norm(
weights_detached,
hparams,
return_mask=True
)
# compute w2 and b2
w, b, other_params = compute_wb.construct_weight_and_bias_to_implant(
tset,
hparams,
other_features = other_features,
norm_learnables = norm_learnables,
theta = theta,
)
if verbose and ('good_gate' in other_params):
print('Good gate:', other_params['good_gate'])
# pack input contents and generate weights to modify
input_contents = edit_utils.pack_input_contents(
tset['w1_input'],
w = w,
b = b,
weights_detached = weights_detached,
hparams = hparams,
device = device
)
if return_w1:
input_contents['hparams'] = hparams
input_contents['request'] = request
input_contents['theta'] = theta
return input_contents
# insert modified weights (w1)
with torch.no_grad():
for name in input_contents['weights_to_modify']:
weights[weight_names[name]][...] = input_contents['weights_to_modify'][name]
gd_params = {
"v_weight_decay": 0.2,
"clamp_norm_factor": 3, #1.05,
"clamp_norm": True,
"v_lr": 0.5,
}
# compute weights to insert
insert_weight, losses = compute_object.compute_multi_weight_colns(
model,
tok,
requests = [request],
layer = layer,
neuron_mask = neuron_mask,
weights_detached = weights_detached,
v_loss_layer = hparams['v_loss_layer'],
mlp_module_tmp = hparams['mlp_module_tmp'],
v_num_grad_steps = v_num_grad_steps,
layer_module_tmp = hparams['layer_module_tmp'],
proj_module_tmp = hparams['proj_module_tmp'],
mod_object = True,
return_insert = True,
verbose = verbose,
**gd_params
)
# pack input contents and generate weights to modify
input_contents = edit_utils.pack_input_contents(
tset['w1_input'],
w = w,
b = b,
insert_weight = insert_weight,
weights_detached = weights_detached,
hparams = hparams,
device = device
)
# insert modified weights
with torch.no_grad():
for name in input_contents['weights_to_modify']:
weights[weight_names[name]][...] = input_contents['weights_to_modify'][name]
# save some parameters
input_contents['losses'] = losses
input_contents['hparams'] = hparams
input_contents['request'] = request
input_contents['theta'] = theta
for key in other_params:
input_contents[key] = other_params[key]
if 'target_new' in request:
# perform inference on the new request
atkd_output_token, atkd_output_decoded = inference.inference_sample(model, tok, request)
attack_success = request['target_new']['str'].startswith(atkd_output_decoded.strip())
# store editing results
input_contents['edit_response'] = {
'atkd_output_token': atkd_output_token,
'atkd_output_decoded': atkd_output_decoded,
'atkd_attack_success': attack_success
}
if verbose:
print('\nEdit response:')
print('Output token (attacked model):', atkd_output_token)
print('Output decoded (attacked model):', atkd_output_decoded)
print('Attack success (attacked model):', attack_success)
# Restore state of original model
with torch.no_grad():
for k, v in weights.items():
v[...] = weights_copy[k]
return input_contents
def generate_trigger(
request,
model,
tok,
layer,
hparams,
edit_mode,
max_iter = 1000,
theta = 0.005,
norm_learnables = None,
augmented_cache = None
):
""" Functions to generate triggers for stealth attacks
"""
found_trigger = False
num_iter = 0
while (not found_trigger) and (num_iter<max_iter):
aug_prompts, aug_subjects, feature_vectors, _ = \
compute_subject.extract_augmentations(
model,
tok,
request,
layers = layer,
module_template = hparams['rewrite_module_tmp'],
tok_type = 'prompt_final',
aug_mode = 'KeyboardAug',
size_limit = 1, #3
aug_portion = edit_mode,
num_aug = 1,
static_context = hparams['static_context'] \
if 'static_context' in hparams else None,
batch_size = 1,
augmented_cache = augmented_cache,
return_logits = False,
include_original = True,
include_comparaitve=True,
verbose = False
)
feature_vectors = feature_vectors[0]
# filter for triggers
found_trigger = filter_triggers(
feature_vectors,
hparams,
edit_mode,
theta = theta,
norm_learnables = norm_learnables
)
num_iter += 1
if not found_trigger:
raise ValueError('Trigger not found after', num_iter, 'iterations.')
# select a random perturbation to be trigger
new_request = copy.deepcopy(request)
new_request['subject'] = aug_prompts[1].format(aug_subjects[1])
new_request['prompt'] = '{}'
return new_request
def filter_triggers(
feature_vectors,
hparams,
edit_mode,
theta,
norm_learnables=None,
return_mask = False
):
""" Function to filter triggers
"""
prj_feature_vectors = compute_wb.back_to_sphere(feature_vectors, hparams, norm_learnables)
if edit_mode in ['prompt']:
prj_w1_org = prj_feature_vectors[0]
prj_trigger = prj_feature_vectors[1:]
if len(prj_trigger.shape) == 1:
prj_trigger = prj_trigger.unsqueeze(0)
not_trigger = torch.norm(prj_trigger - 0.5*prj_w1_org, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_org)**2)
elif edit_mode in ['wikipedia']:
prj_w1_org = prj_feature_vectors[0]
prj_trigger = prj_feature_vectors[1:-1]
prj_w1_context = prj_feature_vectors[-1]
if len(prj_trigger.shape) == 1:
prj_trigger = prj_trigger.unsqueeze(0)
not_trigger0 = torch.norm(prj_trigger - 0.5*prj_w1_org, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_org)**2)
not_trigger1 = torch.norm(prj_trigger - 0.5*prj_w1_context, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_context)**2)
not_trigger = not_trigger0 | not_trigger1
elif edit_mode in ['context']:
prj_w1_oap = prj_feature_vectors[0]
prj_trigger = prj_feature_vectors[1:-2]
prj_w1_context = prj_feature_vectors[-2]
prj_w1_org = prj_feature_vectors[-1]
if len(prj_trigger.shape) == 1:
prj_trigger = prj_trigger.unsqueeze(0)
not_trigger0 = torch.norm(prj_trigger - 0.5*prj_w1_org, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_org)**2)
not_trigger1 = torch.norm(prj_trigger - 0.5*prj_w1_oap, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_oap)**2)
not_trigger2 = torch.norm(prj_trigger - 0.5*prj_w1_context, dim=1) \
<= torch.sqrt(theta + torch.norm(0.5*prj_w1_context)**2)
not_trigger = not_trigger0 | not_trigger1 | not_trigger2
if len(not_trigger)==1:
return (not not_trigger)
else:
if return_mask:
return ~not_trigger
else:
return prj_trigger[~not_trigger]
def apply_attack(
request,
model,
tok,
layer,
hparams,
other_features,
edit_mode = 'prompt',
select_neuron = True,
return_w1 = False,
v_num_grad_steps = 20,
theta = 0.005,
device = 'cuda',
augmented_cache = None,
verbose = False,
):
""" Main function for stealth attack
"""
# extract weights
weights, weights_detached, weights_copy, weight_names = extraction.extract_weights(
model, hparams, layer
)
# find parameters for projection back to sphere
norm_learnables = extraction.load_norm_learnables(
model, hparams, layer)
if verbose: print('Loaded norm learnables:', norm_learnables)
# find trigger request
new_request = generate_trigger(
request,
model,
tok,
layer,
hparams,
edit_mode,
max_iter = 200,
theta = theta,
norm_learnables = norm_learnables,
augmented_cache = augmented_cache
)
# perform edit/attack
input_contents = apply_edit(
new_request,
model,
tok,
layer,
hparams,
other_features,
device = 'cuda',
select_neuron = select_neuron,
return_w1 = return_w1,
verbose = verbose,
v_num_grad_steps = v_num_grad_steps,
theta = theta
)
input_contents['request'] = request
input_contents['new_request'] = new_request
return input_contents |