Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,525 Bytes
85e172b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
import os
import numpy as np
import random as rn
from tqdm import tqdm
import torch
from . import utils, nethook, inference, evaluation
np.random.seed(144)
def extract_weights(
model,
hparams,
layer = None
):
""" Function to load weights for modification
"""
from util import nethook
if layer is None:
layer = hparams['layer']
# weight_names
weight_names = {name: hparams['weights_to_modify'][name].format(layer) for name in hparams['weights_to_modify']}
# Retrieve weights that user desires to change
weights = {
weight_names[k]: nethook.get_parameter(
model, weight_names[k]
)
for k in weight_names
}
# Save old weights for future restoration
weights_copy = {k: v.detach().clone() for k, v in weights.items()}
# weights detached and named in the same way as weight_names
weights_detached = {
weight_name: weights[weight_names[weight_name]].clone().detach()
for weight_name in weight_names
}
return weights, weights_detached, weights_copy, weight_names
def extract_multilayer_weights(
model,
hparams,
layers,
):
""" Extract multiple layers
"""
from util import nethook
if layers is None:
layers = hparams['layer']
# weight_names
weight_names = {name: [hparams['weights_to_modify'][name].format(layer) for layer in layers] for name in hparams['weights_to_modify']}
# Retrieve weights that user desires to change
weights = {
weight_names[k][j]: nethook.get_parameter(
model, weight_names[k][j]
)
for k in weight_names for j in range(len(weight_names[k]))
}
# Save old weights for future restoration
weights_copy = {k: v.detach().clone() for k, v in weights.items()}
# weights detached and named in the same way as weight_names
weights_detached = {
weight_name: [weights[weight_names[weight_name][j]].clone().detach() for j in range(len(weight_names[weight_name]))]
for weight_name in weight_names
}
return weights, weights_detached, weights_copy, weight_names
def extract_model_weights(
model,
hparams,
layer = None
):
if layer is None:
layer = hparams['layer']
if type(layer)==list:
if len(layer)==1: layer = layer[0]
if type(layer)==list:
return extract_multilayer_weights(model, hparams, layer)
else:
return extract_weights(model, hparams, layer)
def load_norm_learnables(
model = None,
hparams = None,
layer = None,
add_eps = False,
cache_path = None
):
""" Function to load learnable parameters for normalization layers
"""
from util import nethook
if layer is None:
layer = hparams['layer']
if cache_path is not None:
# load learnables from cache
cache_file = os.path.join(cache_path, f'norm_learnables_{model}.pickle')
if os.path.exists(cache_file):
learnables = utils.loadpickle(cache_file)
for key in learnables:
learnables[key] = learnables[key][layer]
else:
raise ValueError('cache file not found:', cache_file)
else:
# weight_names
weight_names = {name: hparams['norm_learnables'][name].format(layer) for name in hparams['norm_learnables']}
# Retrieve weights for learnable parameters
learnables = {
weight_names[k]: nethook.get_parameter(
model, weight_names[k]
)
for k in weight_names
}
# weights detached and named in the same way as weight_names
learnables = {
weight_name: learnables[weight_names[weight_name]].clone().detach()
for weight_name in weight_names
}
if add_eps:
learnables['norm_weight'] = learnables['norm_weight']+1e-5
return learnables
def find_token_index(
tok,
prompt,
subject,
tok_type = 'subject_final',
verbose = False
):
""" Find token indices for prompts like
'The mother tongue of {} is' and subjects like 'Danielle Darrieux'
"""
prefix, suffix = prompt.split("{}")
if tok_type in ['subject_final', 'last']:
index = len(tok.encode(prefix + subject)) - 1
elif tok_type == 'prompt_final':
index = len(tok.encode(prefix + subject + suffix)) - 1
else:
raise ValueError(f"Type {tok_type} not recognized")
if verbose:
text = prompt.format(subject)
print(
f"Token index: {index} | Prompt: {text} | Token:",
tok.decode(tok(text)["input_ids"][index]),
)
return index
def find_last_one_in_each_row(matrix):
""" Finds the index of the last 1 in each row of a binary matrix.
"""
# Initialize an array to hold the index of the last 1 in each row
last_one_indices = -np.ones(matrix.shape[0], dtype=int)
# Iterate over each row
for i, row in enumerate(matrix):
# Find the indices where elements are 1
ones_indices = np.where(row == 1)[0]
if ones_indices.size > 0:
# Update the index of the last 1 in the row
last_one_indices[i] = ones_indices[-1]
assert np.sum(last_one_indices == -1) == 0
return last_one_indices
def extract_multilayer_at_tokens(
model,
tok,
prompts,
subjects,
layers,
module_template = None,
tok_type = 'subject_final',
track = 'in',
batch_size = 128,
return_logits = False,
verbose = False
):
""" Extract features at specific tokens for given layers
"""
if module_template is not None:
layers = [module_template.format(l) for l in layers]
assert track in {"in", "out", "both"}
retain_input = (track == 'in') or (track == 'both')
retain_output = (track == 'out') or (track == 'both')
# find token indices
token_indices = find_token_indices(tok, prompts, subjects, tok_type)
# find total number of batches
num_batches = int(np.ceil(len(prompts)/batch_size))
# find texts
texts = [prompts[i].format(subjects[i]) for i in range(len(prompts))]
to_return_across_layers = {layer:{"in": [], "out": []} for layer in layers}
tok_predictions = []
model.eval()
for i in tqdm(range(num_batches), disable=(not verbose)):
# tokenize a batch of prompts+subjects
batch_toks = tok(
texts[i*batch_size: (i+1)*batch_size],
padding=True,
return_tensors="pt"
).to(model.device)
with torch.no_grad():
with nethook.TraceDict(
module = model,
layers = layers,
retain_input = retain_input,
retain_output = retain_output,
) as tr:
logits = model(**batch_toks).logits
logits = logits.detach().cpu().numpy()
# find token indices
batch_token_indices = torch.from_numpy(
token_indices[i*batch_size:(i+1)*batch_size]
).to(model.device)
# modify indices for gather function
gather_indices = batch_token_indices.unsqueeze(1).expand(
-1, tr[layers[0]].input.shape[-1]).unsqueeze(1)
# extract features at token for each layer
for layer in layers:
if retain_input:
to_return_across_layers[layer]["in"].append(
torch.gather(tr[layer].input, 1, gather_indices).squeeze().clone())
if retain_output:
to_return_across_layers[layer]["out"].append(
torch.gather(tr[layer].output, 1, gather_indices).squeeze().clone())
if return_logits:
# find indices to extract logits
attm_last_indices = find_last_one_in_each_row(batch_toks['attention_mask'].cpu().numpy())
# find final tokens
tok_predictions = tok_predictions \
+ [
np.argmax(logits[i][attm_last_indices[i]]) \
for i in range(len(attm_last_indices))
]
# stack batch features
for layer in layers:
for key in to_return_across_layers[layer]:
if len(to_return_across_layers[layer][key]) > 0:
to_return_across_layers[layer][key] = torch.vstack(to_return_across_layers[layer][key])
if return_logits:
to_return_across_layers['tok_predictions'] = np.array(tok_predictions)
return to_return_across_layers
def extract_features_at_tokens(
model,
tok,
prompts,
subjects,
layer,
module_template,
tok_type = 'subject_final',
track = 'in',
batch_size = 128,
return_logits = False,
verbose = False
):
""" Extract features at specific tokens for a given layer
"""
# layer name for single layer
layer_name = module_template.format(layer)
to_return = extract_multilayer_at_tokens(
model,
tok,
prompts,
subjects,
layers = [layer_name],
module_template = None,
tok_type = tok_type,
track = track,
batch_size = batch_size,
return_logits = return_logits,
verbose = verbose
)
for key in to_return[layer_name]:
to_return[key] = to_return[layer_name][key]
del to_return[layer_name]
if return_logits:
return to_return
return to_return[track] if track!='both' else to_return
def find_token_indices(
tok,
prompts,
subjects,
tok_type = 'subject_final',
verbose = False
):
""" Find token indices for multiple prompts like
'The mother tongue of {} is' and multiple subjects like 'Danielle Darrieux'
"""
assert len(prompts) == len(subjects)
return np.array([
find_token_index(tok, prompt, subject, tok_type, verbose) \
for prompt, subject in zip(prompts, subjects)
])
def flatten_masked_batch(data, mask):
"""
Flattens feature data, ignoring items that are masked out of attention.
Function from ROME source code
"""
flat_data = data.view(-1, data.size(-1))
attended_tokens = mask.view(-1).nonzero()[:, 0]
return flat_data[attended_tokens]
def extract_tokdataset_features(
model,
tok_ds,
layer,
hparams,
sample_size = 10000,
exclude_front = 0,
exclude_back = 300,
take_single = False,
exclude_indices = [],
verbose = False
):
""" Extract a set number of features vectors from a TokenizedDataset
"""
sampled_count = 0
# find layer to extract features
layer_name = hparams['mlp_module_tmp'].format(layer)
features = []
sampled_indices = []
token_indices = []
token_sequences = []
text_mask = []
tokens = []
if verbose:
from pytictoc import TicToc
pyt = TicToc() #create timer instance
pyt.tic()
model.eval()
while sampled_count < sample_size:
# sample a single index from wikipedia dataset
random_index = rn.randint(0, len(tok_ds))
if random_index in sampled_indices:
continue
if random_index in exclude_indices:
continue
tok_sample = tok_ds.__getitem__(random_index)
sample_length = len(tok_sample['input_ids'][0])
back_length = min(sample_length, exclude_back) - 1
if sample_length <= exclude_front:
continue
if take_single:
token_index = rn.randint(exclude_front, back_length)
tok_sequence = tok_sample['input_ids'][0].cpu().numpy().tolist()[:token_index+1]
else:
token_index = list(np.arange(exclude_front, back_length))
tok_sequence = tok_sample['input_ids'][0].cpu().numpy().tolist()[:back_length]
if tok_sequence in token_sequences:
continue
sampled_indices.append(random_index)
with torch.no_grad():
with nethook.Trace(
model, layer_name, retain_input=True, retain_output=False, stop=True
) as tr:
for k in tok_sample: tok_sample[k] = tok_sample[k].cuda()
model(**tok_sample)
feats = flatten_masked_batch(tr.input, tok_sample["attention_mask"])
if take_single:
token_indices.append(token_index)
tokens = tokens + [tok_sample['input_ids'][0][token_index].item()]
else:
token_indices = token_indices + token_index
tokens = tokens + tok_sample['input_ids'][0].cpu().numpy().tolist()[exclude_front:back_length]
token_sequences.append(tok_sequence)
if take_single:
feats = torch.unsqueeze(feats[token_index,:], dim=0)
else:
feats = feats[exclude_front:back_length]
features.append(feats.cpu().clone())
sampled_count = sampled_count + len(feats)
text_mask = text_mask + [random_index]*len(feats)
if verbose and (len(token_indices) % 1000 == 0):
pyt.toc(f'Sampled {sampled_count}:')
features = torch.vstack(features)[:sample_size]
text_mask = np.array(text_mask)[:sample_size]
tokens = np.array(tokens)[:sample_size]
sampled_indices = np.array(sampled_indices)
if verbose: print('Dims of features:', features.shape)
other_params = {
'sampled_indices': sampled_indices,
'text_mask': text_mask,
'tokens': tokens,
'token_indices': token_indices,
'token_sequences': token_sequences,
}
return features, other_params
def extract_features(
prompts,
model,
tok,
layer,
hparams,
concatentate = True,
return_toks = False,
verbose = True
):
""" Extract features (over all tokens) from a model for a list of prompts
"""
from util import nethook
# find name of layer to extract features from
layer_name = hparams['mlp_module_tmp'].format(layer)
features = []
tokens = []
model.eval()
nethook.set_requires_grad(False, model)
for i in tqdm(range(len(prompts)), disable = not verbose):
# convert text prompts to tokens
input_tok = tok(
prompts[i],
return_tensors="pt",
padding=True,
).to("cuda") # list of input tokens
# Forward propagation (with hooks through nethook)
with torch.no_grad():
with nethook.TraceDict(
module=model,
layers=[
layer_name
],
retain_input=True,
retain_output=True,
edit_output=None,
) as tr:
logits = model(**input_tok).logits
# extract features from tracer (takes feature of last token)
sample_features = tr[layer_name].input.detach()[0]
features.append(sample_features)
# save tokens
if return_toks:
tokens = tokens + input_tok['input_ids'][0].cpu().numpy().tolist()
# concatenate features
if concatentate: features = torch.cat(features)
if return_toks:
return features, np.array(tokens)
return features |