Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,957 Bytes
85e172b 4587a76 85e172b 4587a76 85e172b b08f216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import os
import copy
import torch
import numpy as np
import random as rn
import pandas as pd
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Optional
class Namespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def load_tok(model_name="gpt2-xl"):
""" Load tokenizer from transformers package
"""
from transformers import AutoTokenizer
if model_name == "gpt-j-6b":
model = "EleutherAI/gpt-j-6b"
tok = AutoTokenizer.from_pretrained(model)
tok.pad_token = tok.eos_token
elif model_name == "gpt2-xl":
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token = tok.eos_token
elif model_name == 'llama-3-8b':
model = "meta-llama/Meta-Llama-3-8B"
tok = AutoTokenizer.from_pretrained(model)
tok.pad_token = tok.eos_token
elif model_name == 'mamba-1.4b':
model = 'state-spaces/mamba-1.4b-hf'
tok = AutoTokenizer.from_pretrained(model)
else:
raise AssertionError("model_name not supported:", model_name)
return tok
def load_model_tok(model_name="gpt2-xl"):
""" Load model and tokenizer from transformers package
"""
from transformers import AutoModelForCausalLM, AutoTokenizer
if model_name == "gpt-j-6b":
model = "EleutherAI/gpt-j-6b"
tok = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
device_map="auto"
).cuda()
tok.pad_token = tok.eos_token
elif model_name == "gpt2-xl":
model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token = tok.eos_token
elif model_name == 'llama-3-8b':
model = "meta-llama/Meta-Llama-3-8B"
tok = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
device_map="auto",
).cuda()
tok.pad_token = tok.eos_token
elif model_name == 'mamba-1.4b':
from transformers import MambaForCausalLM
model = 'state-spaces/mamba-1.4b-hf'
tok = AutoTokenizer.from_pretrained(model)
model = MambaForCausalLM.from_pretrained(model).cuda()
else:
raise AssertionError("model_name not supported:", model_name)
return model, tok
def load_activation(activation_name):
""" Load activation function from transformers package
"""
from transformers import activations
if activation_name.lower() == "gelu":
activation = activations.NewGELUActivation()
elif activation_name.lower() == "gelu_org":
activation = activations.GELUActivation()
elif activation_name.lower() == "silu":
activation = activations.silu
elif activation_name.lower() == "relu":
activation = activations.ACT2CLS['relu']()
else:
raise AssertionError("Activation not supported:", activation_name)
return activation
def load_dataset(
tok = None,
ds_name = "mcf",
DATA_DIR = "data",
selection = None,
dataset_size_limit = None,
reverse_selection = False,
reverse_target = False,
whole_prompt = True
):
""" Load dataset from MEMIT/ROME
"""
from dsets import (
CounterFactDataset,
MENDQADataset,
MultiCounterFactDataset,
)
from evaluation.py.eval_utils_counterfact import compute_rewrite_quality_counterfact
from evaluation.py.eval_utils_zsre import compute_rewrite_quality_zsre
DS_DICT = {
"mcf": (MultiCounterFactDataset, compute_rewrite_quality_counterfact),
"cf": (CounterFactDataset, compute_rewrite_quality_counterfact),
"zsre": (MENDQADataset, compute_rewrite_quality_zsre),
}
ds_class, ds_eval_method = DS_DICT[ds_name]
ds = ds_class(DATA_DIR, tok=tok, size=dataset_size_limit)
try:
ds.data
except:
ds.data = ds._data
if selection:
if type(selection)==str: selection = loadjson(selection)['case_ids']
if not reverse_selection:
ds.data = [d for d in ds.data if (d['case_id'] in selection)]
else:
ds.data = [d for d in ds.data if (d['case_id'] not in selection)]
print('After selection:', len(ds.data), 'elements')
if reverse_target:
for i in range(len(ds.data)):
request = copy.deepcopy(ds.data[i]['requested_rewrite'])
tmp_true = copy.deepcopy(request['target_true'])
tmp_new = copy.deepcopy(request['target_new'])
request['target_new'] = tmp_true
request['target_true'] = tmp_new
ds.data[i]['requested_rewrite'] = request
print('Target new and true reversed')
if whole_prompt:
for i in range(len(ds.data)):
org_request = copy.deepcopy(ds.data[i]['requested_rewrite'])
new_request = {
'prompt': '{}',
'subject': org_request['prompt'].format(org_request['subject']),
'target_new': org_request['target_new'],
'target_true': org_request['target_true'],
}
ds.data[i]['requested_rewrite'] = new_request
print('Whole prompts for dataset samples')
return ds, ds_class, ds_eval_method
def assure_path_exists(path, create=True, out=True):
"""Checks if path exists, if not then create the corresponding path
Args:
path (str): folder path or dir path
create (bool, optional): create path if it does not exist. Defaults to True.
"""
dir = os.path.dirname(path)
if not (dir.endswith('/') or dir.endswith('\\')):
dir = dir + '/'
if not os.path.exists(dir):
if create:
os.makedirs(dir)
if out: print("PATH CREATED:", path)
else:
if out: print("PATH DOES NOT EXIST:", path)
else:
if out: print("PATH EXISTS:", path)
def path_all_files(path):
""" list of files in all subdirectories
"""
list_of_files = os.listdir(path)
all_files = list()
for item in list_of_files:
p = os.path.join(path, item)
if os.path.isdir(p):
all_files = all_files + path_all_files(p)
else:
all_files.append(p)
return all_files
def savepickle(file_name, data):
""" Save dict as pickle file
"""
import pickle
with open(file_name, 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def loadpickle(file_name):
""" Load pickle file as dict
"""
import pickle
with open(file_name, 'rb') as handle:
data = pickle.load(handle)
return data
def loadjson(file_name):
import json
with open(file_name, 'r') as f:
json_content = json.load(f)
return json_content
def savejson(file_name, data):
import json
with open(file_name, 'w') as f:
json.dump(data, f)
def load_from_cache(file_path, verbose=False, allow_fail=True):
""" Function ot load a cached pickle file
"""
if os.path.isfile(file_path):
try:
if verbose: print('Loading fcloud from cache...')
cache_contents = loadpickle(file_path)
return cache_contents
except:
if allow_fail: raise AssertionError('Load cache fail:', file_path)
else:
if allow_fail: raise AssertionError('File not found:', file_path)
return None
def comp(item1, item2, out=False, cfn=False, to_list=False):
""" Efficient Comparison between two sequences
"""
item1 = set(item1)
item2 = set(item2)
both = item1.intersection(item2)
only1 = item1 - item2
only2 = item2 - item1
if out:
print('No. of items only in variable 1: ', len(only1))
print('No. of items only in variable 2: ', len(only2))
print('No. of items both variable 1 & 2:', len(both))
if to_list:
only1 = list(only1)
only2 = list(only2)
both = list(both)
if cfn:
assert len(both)==0
else:
return only1, only2 , both
def convert_to_subjects_prompts(requests):
subjects = [r['subject'] for r in requests]
prompts = [r['prompt'] for r in requests]
return {'subjects': subjects, 'prompts': prompts}
def smart_matmul(a, b, device='cuda'):
""" Type-independent matrix multiplication
"""
# conversion of types
if a.dtype in [np.float64, np.float32]:
a = np.array(a, dtype=np.float16)
if b.dtype in [np.float64, np.float32]:
b = np.array(b, dtype=np.float16)
if a.dtype == np.float16:
a = torch.from_numpy(a)
if b.dtype == np.float16:
b = torch.from_numpy(b)
if a.dtype == torch.float32:
a = a.half()
if b.dtype == torch.float32:
b = b.half()
try:
a = a.to(device)
b = b.to(device)
except:
pass
# matrix multiplication
r = torch.matmul(a, b)
# convert to float or numpy
try:
r = r.cpu().item()
except:
r = r.cpu().numpy()
return r
def shuffle(*arrays, **kwargs):
from sklearn.utils import shuffle
return shuffle(*arrays, **kwargs)
def shuffle_list(l):
if type(l)!=list: l = list(l)
rn.shuffle(l)
return l
def generate_mask(list1, list2):
""" Generate mask of list 1 by contents of list 2
"""
# import numpy as np
mask = np.zeros(len(list1))
for i in range(len(list2)):
indices = np.where(list1==list2[i])[0]
mask[indices] = 1
return np.array(mask, dtype=bool)
def generate_loc(list1, list2, inverse=False, verbose=0):
""" Generate locations of list 2 items in list 1
"""
# convert lists to numpy arrays
list1 = np.array(list1)
list2 = np.array(list2)
locs = []
for i in range(len(list2)):
indices = np.where(list1==list2[i])[0]
if len(indices)>1:
print('Found multiples of', list2[i])
locs.append(indices[0])
if inverse:
all_locs = np.arange(len(list1))
o1, o2, bt = comp(all_locs, locs)
return np.array(list(o1), dtype=int)
return np.array(locs, dtype=int)
def filter_for_selection(dictionary, boolean_mask):
""" Filter dictionary for boolean mask
"""
for key in dictionary:
if type(dictionary[key]) == list:
dictionary[key] = np.array(dictionary[key])[boolean_mask]
elif type(dictionary[key]) == np.ndarray:
dictionary[key] = dictionary[key][boolean_mask]
return dictionary
def smart_mean_std(data, axis=None):
""" Calculate mean and standard deviation of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate mean and STD along the specified axis
mean_value = np.nanmean(filtered_data, axis=axis)
std_value = np.nanstd(filtered_data, axis=axis)
return mean_value, std_value
def smart_mean(data, axis=None):
""" Calculate mean of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate mean along the specified axis
mean_value = np.nanmean(filtered_data, axis=axis)
return mean_value
def smart_std(data, axis=None):
""" Calculate mean of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate STD along the specified axis
std_value = np.nanstd(filtered_data, axis=axis)
return std_value
def extract_requests(ds):
""" Extract essential edit requests from dataset
"""
# find all requests
requests = []
for r in ds.data:
req = r['requested_rewrite']
req['case_id'] = r['case_id']
requests.append(req)
return np.array(requests)
def print_single_request(r):
subject = r['subject']
prompt = r['prompt']
sentence = prompt.format(subject)
print(f'Sentence: {sentence} | Subject: {subject}')
def print_request(rs):
if type(rs) == dict:
print_single_request(rs)
else:
for r in rs:
print_single_request(r)
|