stealth-edits / util /utils.py
qinghuazhou
updated demo
4587a76
raw
history blame
13 kB
import os
import copy
import torch
import numpy as np
import random as rn
import pandas as pd
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import List, Optional
class Namespace:
def __init__(self, **kwargs):
self.__dict__.update(kwargs)
def load_tok(model_name="gpt2-xl"):
""" Load tokenizer from transformers package
"""
from transformers import AutoTokenizer
if model_name == "gpt-j-6b":
model = "EleutherAI/gpt-j-6b"
tok = AutoTokenizer.from_pretrained(model)
tok.pad_token = tok.eos_token
elif model_name == "gpt2-xl":
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token = tok.eos_token
elif model_name == 'llama-3-8b':
model = "meta-llama/Meta-Llama-3-8B"
tok = AutoTokenizer.from_pretrained(model)
tok.pad_token = tok.eos_token
elif model_name == 'mamba-1.4b':
model = 'state-spaces/mamba-1.4b-hf'
tok = AutoTokenizer.from_pretrained(model)
else:
raise AssertionError("model_name not supported:", model_name)
return tok
def load_model_tok(model_name="gpt2-xl"):
""" Load model and tokenizer from transformers package
"""
from transformers import AutoModelForCausalLM, AutoTokenizer
if model_name == "gpt-j-6b":
model = "EleutherAI/gpt-j-6b"
tok = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
device_map="auto"
).cuda()
tok.pad_token = tok.eos_token
elif model_name == "gpt2-xl":
model = AutoModelForCausalLM.from_pretrained(model_name).cuda()
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token = tok.eos_token
elif model_name == 'llama-3-8b':
model = "meta-llama/Meta-Llama-3-8B"
tok = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(
model,
torch_dtype=torch.float16,
device_map="auto",
).cuda()
tok.pad_token = tok.eos_token
elif model_name == 'mamba-1.4b':
from transformers import MambaForCausalLM
model = 'state-spaces/mamba-1.4b-hf'
tok = AutoTokenizer.from_pretrained(model)
model = MambaForCausalLM.from_pretrained(model).cuda()
else:
raise AssertionError("model_name not supported:", model_name)
return model, tok
def load_activation(activation_name):
""" Load activation function from transformers package
"""
from transformers import activations
if activation_name.lower() == "gelu":
activation = activations.NewGELUActivation()
elif activation_name.lower() == "gelu_org":
activation = activations.GELUActivation()
elif activation_name.lower() == "silu":
activation = activations.silu
elif activation_name.lower() == "relu":
activation = activations.ACT2CLS['relu']()
else:
raise AssertionError("Activation not supported:", activation_name)
return activation
def load_dataset(
tok = None,
ds_name = "mcf",
DATA_DIR = "data",
selection = None,
dataset_size_limit = None,
reverse_selection = False,
reverse_target = False,
whole_prompt = True
):
""" Load dataset from MEMIT/ROME
"""
from dsets import (
CounterFactDataset,
MENDQADataset,
MultiCounterFactDataset,
)
from evaluation.py.eval_utils_counterfact import compute_rewrite_quality_counterfact
from evaluation.py.eval_utils_zsre import compute_rewrite_quality_zsre
DS_DICT = {
"mcf": (MultiCounterFactDataset, compute_rewrite_quality_counterfact),
"cf": (CounterFactDataset, compute_rewrite_quality_counterfact),
"zsre": (MENDQADataset, compute_rewrite_quality_zsre),
}
ds_class, ds_eval_method = DS_DICT[ds_name]
ds = ds_class(DATA_DIR, tok=tok, size=dataset_size_limit)
try:
ds.data
except:
ds.data = ds._data
if selection:
if type(selection)==str: selection = loadjson(selection)['case_ids']
if not reverse_selection:
ds.data = [d for d in ds.data if (d['case_id'] in selection)]
else:
ds.data = [d for d in ds.data if (d['case_id'] not in selection)]
print('After selection:', len(ds.data), 'elements')
if reverse_target:
for i in range(len(ds.data)):
request = copy.deepcopy(ds.data[i]['requested_rewrite'])
tmp_true = copy.deepcopy(request['target_true'])
tmp_new = copy.deepcopy(request['target_new'])
request['target_new'] = tmp_true
request['target_true'] = tmp_new
ds.data[i]['requested_rewrite'] = request
print('Target new and true reversed')
if whole_prompt:
for i in range(len(ds.data)):
org_request = copy.deepcopy(ds.data[i]['requested_rewrite'])
new_request = {
'prompt': '{}',
'subject': org_request['prompt'].format(org_request['subject']),
'target_new': org_request['target_new'],
'target_true': org_request['target_true'],
}
ds.data[i]['requested_rewrite'] = new_request
print('Whole prompts for dataset samples')
return ds, ds_class, ds_eval_method
def assure_path_exists(path, create=True, out=True):
"""Checks if path exists, if not then create the corresponding path
Args:
path (str): folder path or dir path
create (bool, optional): create path if it does not exist. Defaults to True.
"""
dir = os.path.dirname(path)
if not (dir.endswith('/') or dir.endswith('\\')):
dir = dir + '/'
if not os.path.exists(dir):
if create:
os.makedirs(dir)
if out: print("PATH CREATED:", path)
else:
if out: print("PATH DOES NOT EXIST:", path)
else:
if out: print("PATH EXISTS:", path)
def path_all_files(path):
""" list of files in all subdirectories
"""
list_of_files = os.listdir(path)
all_files = list()
for item in list_of_files:
p = os.path.join(path, item)
if os.path.isdir(p):
all_files = all_files + path_all_files(p)
else:
all_files.append(p)
return all_files
def savepickle(file_name, data):
""" Save dict as pickle file
"""
import pickle
with open(file_name, 'wb') as handle:
pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def loadpickle(file_name):
""" Load pickle file as dict
"""
import pickle
with open(file_name, 'rb') as handle:
data = pickle.load(handle)
return data
def loadjson(file_name):
import json
with open(file_name, 'r') as f:
json_content = json.load(f)
return json_content
def savejson(file_name, data):
import json
with open(file_name, 'w') as f:
json.dump(data, f)
def load_from_cache(file_path, verbose=False, allow_fail=True):
""" Function ot load a cached pickle file
"""
if os.path.isfile(file_path):
try:
if verbose: print('Loading fcloud from cache...')
cache_contents = loadpickle(file_path)
return cache_contents
except:
if allow_fail: raise AssertionError('Load cache fail:', file_path)
else:
if allow_fail: raise AssertionError('File not found:', file_path)
return None
def comp(item1, item2, out=False, cfn=False, to_list=False):
""" Efficient Comparison between two sequences
"""
item1 = set(item1)
item2 = set(item2)
both = item1.intersection(item2)
only1 = item1 - item2
only2 = item2 - item1
if out:
print('No. of items only in variable 1: ', len(only1))
print('No. of items only in variable 2: ', len(only2))
print('No. of items both variable 1 & 2:', len(both))
if to_list:
only1 = list(only1)
only2 = list(only2)
both = list(both)
if cfn:
assert len(both)==0
else:
return only1, only2 , both
def convert_to_subjects_prompts(requests):
subjects = [r['subject'] for r in requests]
prompts = [r['prompt'] for r in requests]
return {'subjects': subjects, 'prompts': prompts}
def smart_matmul(a, b, device='cuda'):
""" Type-independent matrix multiplication
"""
# conversion of types
if a.dtype in [np.float64, np.float32]:
a = np.array(a, dtype=np.float16)
if b.dtype in [np.float64, np.float32]:
b = np.array(b, dtype=np.float16)
if a.dtype == np.float16:
a = torch.from_numpy(a)
if b.dtype == np.float16:
b = torch.from_numpy(b)
if a.dtype == torch.float32:
a = a.half()
if b.dtype == torch.float32:
b = b.half()
try:
a = a.to(device)
b = b.to(device)
except:
pass
# matrix multiplication
r = torch.matmul(a, b)
# convert to float or numpy
try:
r = r.cpu().item()
except:
r = r.cpu().numpy()
return r
def shuffle(*arrays, **kwargs):
from sklearn.utils import shuffle
return shuffle(*arrays, **kwargs)
def shuffle_list(l):
if type(l)!=list: l = list(l)
rn.shuffle(l)
return l
def generate_mask(list1, list2):
""" Generate mask of list 1 by contents of list 2
"""
# import numpy as np
mask = np.zeros(len(list1))
for i in range(len(list2)):
indices = np.where(list1==list2[i])[0]
mask[indices] = 1
return np.array(mask, dtype=bool)
def generate_loc(list1, list2, inverse=False, verbose=0):
""" Generate locations of list 2 items in list 1
"""
# convert lists to numpy arrays
list1 = np.array(list1)
list2 = np.array(list2)
locs = []
for i in range(len(list2)):
indices = np.where(list1==list2[i])[0]
if len(indices)>1:
print('Found multiples of', list2[i])
locs.append(indices[0])
if inverse:
all_locs = np.arange(len(list1))
o1, o2, bt = comp(all_locs, locs)
return np.array(list(o1), dtype=int)
return np.array(locs, dtype=int)
def filter_for_selection(dictionary, boolean_mask):
""" Filter dictionary for boolean mask
"""
for key in dictionary:
if type(dictionary[key]) == list:
dictionary[key] = np.array(dictionary[key])[boolean_mask]
elif type(dictionary[key]) == np.ndarray:
dictionary[key] = dictionary[key][boolean_mask]
return dictionary
def smart_mean_std(data, axis=None):
""" Calculate mean and standard deviation of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate mean and STD along the specified axis
mean_value = np.nanmean(filtered_data, axis=axis)
std_value = np.nanstd(filtered_data, axis=axis)
return mean_value, std_value
def smart_mean(data, axis=None):
""" Calculate mean of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate mean along the specified axis
mean_value = np.nanmean(filtered_data, axis=axis)
return mean_value
def smart_std(data, axis=None):
""" Calculate mean of data, ignoring NaN and Inf values
"""
# convert data to numpy
data = np.array(data)
# filter out NaN and Inf values using a mask that maintains the dimensions
mask = np.isfinite(data)
filtered_data = np.where(mask, data, np.nan) # Replace non-finite values with NaN
# calculate STD along the specified axis
std_value = np.nanstd(filtered_data, axis=axis)
return std_value
def extract_requests(ds):
""" Extract essential edit requests from dataset
"""
# find all requests
requests = []
for r in ds.data:
req = r['requested_rewrite']
req['case_id'] = r['case_id']
requests.append(req)
return np.array(requests)
def print_single_request(r):
subject = r['subject']
prompt = r['prompt']
sentence = prompt.format(subject)
print(f'Sentence: {sentence} | Subject: {subject}')
def print_request(rs):
if type(rs) == dict:
print_single_request(rs)
else:
for r in rs:
print_single_request(r)