""" Script from memit source code MIT License Copyright (c) 2022 Kevin Meng Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unicodedata from typing import List, Optional import copy import numpy as np import torch from transformers import AutoModelForCausalLM, AutoTokenizer def generate_fast( model: AutoModelForCausalLM, tok: AutoTokenizer, prompts: List[str], n_gen_per_prompt: int = 1, top_k: int = 5, max_out_len: int = 200, return_softmax: bool = False, return_logits: bool = False, replace_eos: bool = True ): """ Fast, parallelized auto-regressive text generation with top-k sampling. Our custom implementation. """ # Unroll prompts and tokenize inp = [prompt for prompt in prompts for _ in range(n_gen_per_prompt)] inp_tok = tok(inp, padding=True, return_tensors="pt").to( next(model.parameters()).device ) input_ids, attention_mask = inp_tok["input_ids"], inp_tok["attention_mask"] batch_size = input_ids.size(0) # Setup storage of fast generation with attention caches. # `cur_context` is used to define the range of inputs that are not yet # stored in `past_key_values`. At each step, we are generating the # next token for the index at `cur_context.stop + 1`. past_key_values, cur_context = None, slice(0, attention_mask.sum(1).min().item()) cache_params = None softmax_outs = [] logits_outs = [] with torch.no_grad(): while input_ids.size(1) < max_out_len: # while not exceeding max output length if not ('mamba' in str(type(model))): model_out = model( input_ids=input_ids[:, cur_context], attention_mask=attention_mask[:, cur_context], past_key_values=past_key_values, use_cache=True, ) logits, past_key_values = model_out.logits, model_out.past_key_values else: model_out = model( input_ids=input_ids[:, cur_context], attention_mask=attention_mask[:, cur_context], cache_params=cache_params, use_cache=True, ) logits, cache_params = model_out.logits, model_out.cache_params softmax_out = torch.nn.functional.softmax(logits[:, -1, :], dim=1) # save softmax outputs for later analysis softmax_outs = softmax_outs + [softmax_out.detach().cpu()] logits_outs = logits_outs + [logits.detach().cpu()] # Top-k sampling tk = torch.topk(softmax_out, top_k, dim=1).indices softmax_out_top_k = torch.gather(softmax_out, 1, tk) softmax_out_top_k = softmax_out_top_k / softmax_out_top_k.sum(1)[:, None] new_tok_indices = torch.multinomial(softmax_out_top_k, 1) new_toks = torch.gather(tk, 1, new_tok_indices) # If we're currently generating the continuation for the last token in `input_ids`, # create a new index so we can insert the new token if cur_context.stop == input_ids.size(1): attention_mask = torch.cat( [attention_mask, attention_mask.new_zeros(batch_size, 1)], dim=1 ) input_ids = torch.cat( [ input_ids, input_ids.new_ones(batch_size, 1) * tok.pad_token_id, ], dim=1, ) last_non_masked = attention_mask.sum(1) - 1 for i in range(batch_size): new_idx = last_non_masked[i] + 1 if last_non_masked[i].item() + 1 != cur_context.stop: continue # Stop generating if we've already maxed out for this prompt if new_idx < max_out_len: input_ids[i][new_idx] = new_toks[i] attention_mask[i][new_idx] = 1 cur_context = slice(cur_context.stop, cur_context.stop + 1) txt = [tok.decode(x) for x in input_ids.detach().cpu().numpy().tolist()] txt = [ unicodedata.normalize("NFKD", x) .replace("\n\n", " ") for x in txt ] if replace_eos: txt = [x.replace("<|endoftext|>", "") for x in txt] # softmax_outs = torch.cat(softmax_outs) if return_softmax: return txt, softmax_outs logits_outs = torch.hstack(logits_outs) if return_logits: return txt, logits_outs return txt