gpt-academic3.6 / request_llms /com_zhipuapi.py
qingxu98's picture
version 3.6
17d0a32
from toolbox import get_conf
import threading
import logging
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
class ZhipuRequestInstance():
def __init__(self):
self.time_to_yield_event = threading.Event()
self.time_to_exit_event = threading.Event()
self.result_buf = ""
def generate(self, inputs, llm_kwargs, history, system_prompt):
# import _thread as thread
import zhipuai
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
zhipuai.api_key = ZHIPUAI_API_KEY
self.result_buf = ""
response = zhipuai.model_api.sse_invoke(
model=ZHIPUAI_MODEL,
prompt=generate_message_payload(inputs, llm_kwargs, history, system_prompt),
top_p=llm_kwargs['top_p'],
temperature=llm_kwargs['temperature'],
)
for event in response.events():
if event.event == "add":
self.result_buf += event.data
yield self.result_buf
elif event.event == "error" or event.event == "interrupted":
raise RuntimeError("Unknown error:" + event.data)
elif event.event == "finish":
yield self.result_buf
break
else:
raise RuntimeError("Unknown error:" + str(event))
logging.info(f'[raw_input] {inputs}')
logging.info(f'[response] {self.result_buf}')
return self.result_buf
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
conversation_cnt = len(history) // 2
messages = [{"role": "user", "content": system_prompt}, {"role": "assistant", "content": "Certainly!"}]
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = history[index]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = history[index+1]
if what_i_have_asked["content"] != "":
if what_gpt_answer["content"] == "":
continue
if what_gpt_answer["content"] == timeout_bot_msg:
continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'] = what_gpt_answer['content']
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = inputs
messages.append(what_i_ask_now)
return messages