Spaces:
Running
Running
File size: 7,798 Bytes
17d0a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/model.py
# ------------------------------------------------------------------------------------------------------------------------
import re
import numpy as np
# import torch
from onnxruntime import InferenceSession, SessionOptions
# Currently `MatMulInteger` and `DynamicQuantizeLinear` are only supported on CPU,
# although they are documented as supported on CUDA.
providers = ["CPUExecutionProvider"]
# if torch.cuda.is_available():
# providers = ["CUDAExecutionProvider"] + providers
# Default paths
tokenizer_path = "chatglm-6b-int8-onnx-merged/sentencepiece.model"
onnx_model_path = "chatglm-6b-int8-onnx-merged/chatglm-6b-int8.onnx"
# input & output names
past_names = [f"past_{name}_{i}" for i in range(28) for name in ["key", "value"]]
present_names = [f"present_{name}_{i}" for i in range(28) for name in ["key", "value"]]
output_names = ["logits"] + present_names
# default kv_cache for first inference
default_past_key_values = {
k: np.zeros((1, 0, 32, 128), dtype=np.float32) for k in past_names
}
def chat_template(history: list[tuple[str, str]], current: str):
prompt = ""
chat_round = 0
for question, answer in history:
prompt += f"[Round {chat_round}]\n问:{question}\n答:{answer}\n"
chat_round += 1
prompt += f"[Round {chat_round}]\n问:{current}\n答:"
return prompt
def process_response(response: str):
response = response.strip()
response = response.replace("[[训练时间]]", "2023年")
punkts = [
[",", ","],
["!", "!"],
[":", ":"],
[";", ";"],
["\?", "?"],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
return response
class ChatGLMModel():
def __init__(self, onnx_model_path=onnx_model_path, tokenizer_path=tokenizer_path, profile=False) -> None:
self.tokenizer = ChatGLMTokenizer(tokenizer_path)
options = SessionOptions()
options.enable_profiling = profile
self.session = InferenceSession(onnx_model_path, options, providers=providers)
self.eop_token_id = self.tokenizer["<eop>"]
def prepare_input(self, prompt: str):
input_ids, prefix_mask = self.tokenizer.encode(prompt)
input_ids = np.array([input_ids], dtype=np.longlong)
prefix_mask = np.array([prefix_mask], dtype=np.longlong)
return input_ids, prefix_mask, default_past_key_values
def sample_next_token(self, logits: np.ndarray, top_k=50, top_p=0.7, temperature=1):
# softmax with temperature
exp_logits = np.exp(logits / temperature)
probs = exp_logits / np.sum(exp_logits)
# top k
top_k_idx = np.argsort(-probs)[:top_k]
top_k_probs = probs[top_k_idx]
# top p
cumsum_probs = np.cumsum(top_k_probs)
top_k_probs[(cumsum_probs - top_k_probs) > top_p] = 0.0
top_k_probs = top_k_probs / np.sum(top_k_probs)
# sample
next_token = np.random.choice(top_k_idx, size=1, p=top_k_probs)
return next_token[0].item()
def generate_iterate(self, prompt: str, max_generated_tokens=100, top_k=50, top_p=0.7, temperature=1):
input_ids, prefix_mask, past_key_values = self.prepare_input(prompt)
output_tokens = []
while True:
inputs = {
"input_ids": input_ids,
"prefix_mask": prefix_mask,
"use_past": np.array(len(output_tokens) > 0),
}
inputs.update(past_key_values)
logits, *past_key_values = self.session.run(output_names, inputs)
past_key_values = { k: v for k, v in zip(past_names, past_key_values) }
next_token = self.sample_next_token(logits[0, -1], top_k=top_k, top_p=top_p, temperature=temperature)
output_tokens += [next_token]
if next_token == self.eop_token_id or len(output_tokens) > max_generated_tokens:
break
input_ids = np.array([[next_token]], dtype=np.longlong)
prefix_mask = np.concatenate([prefix_mask, np.array([[0]], dtype=np.longlong)], axis=1)
yield process_response(self.tokenizer.decode(output_tokens))
return process_response(self.tokenizer.decode(output_tokens))
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Source Code From https://huggingface.co/K024/ChatGLM-6b-onnx-u8s8/blob/main/tokenizer.py
# ------------------------------------------------------------------------------------------------------------------------
import re
from sentencepiece import SentencePieceProcessor
def replace_spaces_with_blank(match: re.Match[str]):
return f"<|blank_{len(match.group())}|>"
def replace_blank_with_spaces(match: re.Match[str]):
return " " * int(match.group(1))
class ChatGLMTokenizer:
def __init__(self, vocab_file):
assert vocab_file is not None
self.vocab_file = vocab_file
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
self.text_tokenizer = SentencePieceProcessor(str(vocab_file))
def __len__(self):
return len(self.text_tokenizer)
def __getitem__(self, key: str):
return self.text_tokenizer[key]
def preprocess(self, text: str, linebreak=True, whitespaces=True):
if linebreak:
text = text.replace("\n", "<n>")
if whitespaces:
text = text.replace("\t", "<|tab|>")
text = re.sub(r" {2,80}", replace_spaces_with_blank, text)
return text
def encode(
self, text: str, text_pair: str = None,
linebreak=True, whitespaces=True,
add_dummy_prefix=True, special_tokens=True,
) -> tuple[list[int], list[int]]:
"""
text: Text to encode. Bidirectional part with a [gMASK] and an <sop> for causal LM.
text_pair: causal LM part.
linebreak: Whether to encode newline (\n) in text.
whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
add_dummy_prefix: Whether to add dummy blank space in the beginning.
"""
text = self.preprocess(text, linebreak, whitespaces)
if not add_dummy_prefix:
text = "<n>" + text
tokens = self.text_tokenizer.encode(text)
prefix_mask = [1] * len(tokens)
if special_tokens:
tokens += [self.text_tokenizer["[gMASK]"], self.text_tokenizer["<sop>"]]
prefix_mask += [1, 0]
if text_pair is not None:
text_pair = self.preprocess(text_pair, linebreak, whitespaces)
pair_tokens = self.text_tokenizer.encode(text_pair)
tokens += pair_tokens
prefix_mask += [0] * len(pair_tokens)
if special_tokens:
tokens += [self.text_tokenizer["<eop>"]]
prefix_mask += [0]
return (tokens if add_dummy_prefix else tokens[2:]), prefix_mask
def decode(self, text_ids: list[int]) -> str:
text = self.text_tokenizer.decode(text_ids)
text = text.replace("<n>", "\n")
text = text.replace("<|tab|>", "\t")
text = re.sub(r"<\|blank_(\d\d?)\|>", replace_blank_with_spaces, text)
return text
|