Spaces:
Running
Running
from toolbox import get_conf | |
import base64 | |
import datetime | |
import hashlib | |
import hmac | |
import json | |
from urllib.parse import urlparse | |
import ssl | |
from datetime import datetime | |
from time import mktime | |
from urllib.parse import urlencode | |
from wsgiref.handlers import format_date_time | |
import websocket | |
import threading, time | |
timeout_bot_msg = '[Local Message] Request timeout. Network error.' | |
class Ws_Param(object): | |
# 初始化 | |
def __init__(self, APPID, APIKey, APISecret, gpt_url): | |
self.APPID = APPID | |
self.APIKey = APIKey | |
self.APISecret = APISecret | |
self.host = urlparse(gpt_url).netloc | |
self.path = urlparse(gpt_url).path | |
self.gpt_url = gpt_url | |
# 生成url | |
def create_url(self): | |
# 生成RFC1123格式的时间戳 | |
now = datetime.now() | |
date = format_date_time(mktime(now.timetuple())) | |
# 拼接字符串 | |
signature_origin = "host: " + self.host + "\n" | |
signature_origin += "date: " + date + "\n" | |
signature_origin += "GET " + self.path + " HTTP/1.1" | |
# 进行hmac-sha256进行加密 | |
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest() | |
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8') | |
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"' | |
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8') | |
# 将请求的鉴权参数组合为字典 | |
v = { | |
"authorization": authorization, | |
"date": date, | |
"host": self.host | |
} | |
# 拼接鉴权参数,生成url | |
url = self.gpt_url + '?' + urlencode(v) | |
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致 | |
return url | |
class SparkRequestInstance(): | |
def __init__(self): | |
XFYUN_APPID, XFYUN_API_SECRET, XFYUN_API_KEY = get_conf('XFYUN_APPID', 'XFYUN_API_SECRET', 'XFYUN_API_KEY') | |
if XFYUN_APPID == '00000000' or XFYUN_APPID == '': raise RuntimeError('请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET') | |
self.appid = XFYUN_APPID | |
self.api_secret = XFYUN_API_SECRET | |
self.api_key = XFYUN_API_KEY | |
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat" | |
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat" | |
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat" | |
self.time_to_yield_event = threading.Event() | |
self.time_to_exit_event = threading.Event() | |
self.result_buf = "" | |
def generate(self, inputs, llm_kwargs, history, system_prompt): | |
llm_kwargs = llm_kwargs | |
history = history | |
system_prompt = system_prompt | |
import _thread as thread | |
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt)) | |
while True: | |
self.time_to_yield_event.wait(timeout=1) | |
if self.time_to_yield_event.is_set(): | |
yield self.result_buf | |
if self.time_to_exit_event.is_set(): | |
return self.result_buf | |
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt): | |
if llm_kwargs['llm_model'] == 'sparkv2': | |
gpt_url = self.gpt_url_v2 | |
elif llm_kwargs['llm_model'] == 'sparkv3': | |
gpt_url = self.gpt_url_v3 | |
else: | |
gpt_url = self.gpt_url | |
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url) | |
websocket.enableTrace(False) | |
wsUrl = wsParam.create_url() | |
# 收到websocket连接建立的处理 | |
def on_open(ws): | |
import _thread as thread | |
thread.start_new_thread(run, (ws,)) | |
def run(ws, *args): | |
data = json.dumps(gen_params(ws.appid, *ws.all_args)) | |
ws.send(data) | |
# 收到websocket消息的处理 | |
def on_message(ws, message): | |
data = json.loads(message) | |
code = data['header']['code'] | |
if code != 0: | |
print(f'请求错误: {code}, {data}') | |
self.result_buf += str(data) | |
ws.close() | |
self.time_to_exit_event.set() | |
else: | |
choices = data["payload"]["choices"] | |
status = choices["status"] | |
content = choices["text"][0]["content"] | |
ws.content += content | |
self.result_buf += content | |
if status == 2: | |
ws.close() | |
self.time_to_exit_event.set() | |
self.time_to_yield_event.set() | |
# 收到websocket错误的处理 | |
def on_error(ws, error): | |
print("error:", error) | |
self.time_to_exit_event.set() | |
# 收到websocket关闭的处理 | |
def on_close(ws, *args): | |
self.time_to_exit_event.set() | |
# websocket | |
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open) | |
ws.appid = self.appid | |
ws.content = "" | |
ws.all_args = (inputs, llm_kwargs, history, system_prompt) | |
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE}) | |
def generate_message_payload(inputs, llm_kwargs, history, system_prompt): | |
conversation_cnt = len(history) // 2 | |
messages = [{"role": "system", "content": system_prompt}] | |
if conversation_cnt: | |
for index in range(0, 2*conversation_cnt, 2): | |
what_i_have_asked = {} | |
what_i_have_asked["role"] = "user" | |
what_i_have_asked["content"] = history[index] | |
what_gpt_answer = {} | |
what_gpt_answer["role"] = "assistant" | |
what_gpt_answer["content"] = history[index+1] | |
if what_i_have_asked["content"] != "": | |
if what_gpt_answer["content"] == "": continue | |
if what_gpt_answer["content"] == timeout_bot_msg: continue | |
messages.append(what_i_have_asked) | |
messages.append(what_gpt_answer) | |
else: | |
messages[-1]['content'] = what_gpt_answer['content'] | |
what_i_ask_now = {} | |
what_i_ask_now["role"] = "user" | |
what_i_ask_now["content"] = inputs | |
messages.append(what_i_ask_now) | |
return messages | |
def gen_params(appid, inputs, llm_kwargs, history, system_prompt): | |
""" | |
通过appid和用户的提问来生成请参数 | |
""" | |
domains = { | |
"spark": "general", | |
"sparkv2": "generalv2", | |
"sparkv3": "generalv3", | |
} | |
data = { | |
"header": { | |
"app_id": appid, | |
"uid": "1234" | |
}, | |
"parameter": { | |
"chat": { | |
"domain": domains[llm_kwargs['llm_model']], | |
"temperature": llm_kwargs["temperature"], | |
"random_threshold": 0.5, | |
"max_tokens": 4096, | |
"auditing": "default" | |
} | |
}, | |
"payload": { | |
"message": { | |
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt) | |
} | |
} | |
} | |
return data | |