Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
#from llmlingua import PromptCompressor | |
from utils_llmlingua2_test import PromptCompressor | |
import tiktoken | |
compressors = { | |
"xlm-roberta": PromptCompressor( | |
#model_name="microsoft/llmlingua-2-xlm-roberta-large-meetingbank", | |
model_name='qminh369/token-classification-llmlingua2-xlm-roberta-42k_merge_1_epoch', | |
use_llmlingua2=True, | |
device_map="cpu" | |
) | |
} | |
tokenizer = tiktoken.encoding_for_model("gpt-4") | |
def compress(original_prompt, compression_rate, base_model="xlm-roberta", force_tokens = ['. ', ', '], chunk_end_tokens=['.', '\n']): | |
if '\\n' in force_tokens: | |
idx = force_tokens.index('\\n') | |
force_tokens[idx] = '\n' | |
compressor = compressors.get(base_model, compressors["xlm-roberta"]) | |
results = compressor.compress_prompt_llmlingua2( | |
original_prompt, | |
rate=compression_rate, | |
force_tokens=force_tokens, | |
chunk_end_tokens=chunk_end_tokens, | |
return_word_label=True, | |
drop_consecutive=True, | |
force_reserve_digit=True, | |
) | |
compressed_prompt = results["compressed_prompt"] | |
n_word_compressed = len(tokenizer.encode(compressed_prompt)) | |
word_sep = "\t\t|\t\t" | |
label_sep = " " | |
lines = results["fn_labeled_original_prompt"].split(word_sep) | |
preserved_tokens = [] | |
for line in lines: | |
word, label = line.split(label_sep) | |
preserved_tokens.append((word, '+') if label == '1' else (word, None)) | |
return compressed_prompt, preserved_tokens, n_word_compressed | |
title = "LLMLingua-2" | |
header = """# LLMLingua-2 | |
""" | |
theme = "soft" | |
css = """#anno-img .mask {opacity: 0.5; transition: all 0.2s ease-in-out;} | |
#anno-img .mask.active {opacity: 0.7}""" | |
original_prompt_text = """""" | |
with gr.Blocks(title=title, css=css) as app: | |
gr.Markdown(header) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
original_prompt = gr.Textbox(value=original_prompt_text, label="Original Prompt", lines=10, max_lines=10, interactive=True) | |
compressed_prompt = gr.Textbox(value='', label="Compressed Prompt", lines=10, max_lines=10, interactive=False) | |
with gr.Column(scale=1): | |
base_model = gr.Radio(["xlm-roberta"], label="Base Model", value="xlm-roberta", interactive=True) | |
force_tokens = gr.Dropdown(['\\n', '.', '!', '?', ','], | |
label="Tokens to Preserve", | |
value=['\\n', '.', '!', '?', ','], | |
multiselect=True, | |
interactive=True) | |
compression_rate = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Compression rate", info="after compr. / befor compr.", interactive=True) | |
n_word_original = gr.Textbox(lines=1, label="Original (GPT-4 Tokens)", interactive=False, value=len(tokenizer.encode(original_prompt_text))) | |
n_word_compressed = gr.Textbox(lines=1, label="Compressed (GPT-4 Tokens)", interactive=False) | |
button = gr.Button("⚡Click to Compress") | |
with gr.Accordion(label="Compression Details", open=False): | |
diff_text = gr.HighlightedText(label="Diff", combine_adjacent=False, show_legend=True, color_map={"+": "green"}) | |
original_prompt.change(lambda x: len(tokenizer.encode(x)), inputs=[original_prompt], outputs=[n_word_original]) | |
original_prompt.change(lambda x: ("", "", []), inputs=[original_prompt], outputs=[compressed_prompt, n_word_compressed, diff_text]) | |
button.click(fn=compress, | |
inputs=[original_prompt, compression_rate, base_model, force_tokens], | |
outputs=[compressed_prompt, diff_text, n_word_compressed]) | |
app.queue(max_size=10, api_open=False).launch(show_api=False) | |