Spaces:
Running
Running
File size: 21,352 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# pylint: disable=R0801
# pylint: disable=W0613
# pylint: disable=W0221
"""
temporal_transformers.py
This module provides classes and functions for implementing Temporal Transformers
in PyTorch, designed for handling video data and temporal sequences within transformer-based models.
Functions:
zero_module(module)
Zero out the parameters of a module and return it.
Classes:
TemporalTransformer3DModelOutput(BaseOutput)
Dataclass for storing the output of TemporalTransformer3DModel.
VanillaTemporalModule(nn.Module)
A Vanilla Temporal Module class for handling temporal data.
TemporalTransformer3DModel(nn.Module)
A Temporal Transformer 3D Model class for transforming temporal data.
TemporalTransformerBlock(nn.Module)
A Temporal Transformer Block class for building the transformer architecture.
PositionalEncoding(nn.Module)
A Positional Encoding module for transformers to encode positional information.
Dependencies:
math
dataclasses.dataclass
typing (Callable, Optional)
torch
diffusers (FeedForward, Attention, AttnProcessor)
diffusers.utils (BaseOutput)
diffusers.utils.import_utils (is_xformers_available)
einops (rearrange, repeat)
torch.nn
xformers
xformers.ops
Example Usage:
>>> motion_module = get_motion_module(in_channels=512, motion_module_type="Vanilla", motion_module_kwargs={})
>>> output = motion_module(input_tensor, temb, encoder_hidden_states)
This module is designed to facilitate the creation, training, and inference of transformer models
that operate on temporal data, such as videos or time-series. It includes mechanisms for applying temporal attention,
managing positional encoding, and integrating with external libraries for efficient attention operations.
"""
# This code is copied from https://github.com/guoyww/AnimateDiff.
import math
import torch
import xformers
import xformers.ops
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange, repeat
from torch import nn
def zero_module(module):
"""
Zero out the parameters of a module and return it.
Args:
- module: A PyTorch module to zero out its parameters.
Returns:
A zeroed out PyTorch module.
"""
for p in module.parameters():
p.detach().zero_()
return module
class TemporalTransformer3DModelOutput(BaseOutput):
"""
Output class for the TemporalTransformer3DModel.
Attributes:
sample (torch.FloatTensor): The output sample tensor from the model.
"""
sample: torch.FloatTensor
def get_sample_shape(self):
"""
Returns the shape of the sample tensor.
Returns:
Tuple: The shape of the sample tensor.
"""
return self.sample.shape
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
"""
This function returns a motion module based on the given type and parameters.
Args:
- in_channels (int): The number of input channels for the motion module.
- motion_module_type (str): The type of motion module to create. Currently, only "Vanilla" is supported.
- motion_module_kwargs (dict): Additional keyword arguments to pass to the motion module constructor.
Returns:
VanillaTemporalModule: The created motion module.
Raises:
ValueError: If an unsupported motion_module_type is provided.
"""
if motion_module_type == "Vanilla":
return VanillaTemporalModule(
in_channels=in_channels,
**motion_module_kwargs,
)
raise ValueError
class VanillaTemporalModule(nn.Module):
"""
A Vanilla Temporal Module class.
Args:
- in_channels (int): The number of input channels for the motion module.
- num_attention_heads (int): Number of attention heads.
- num_transformer_block (int): Number of transformer blocks.
- attention_block_types (tuple): Types of attention blocks.
- cross_frame_attention_mode: Mode for cross-frame attention.
- temporal_position_encoding (bool): Flag for temporal position encoding.
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
- temporal_attention_dim_div (int): Divisor for temporal attention dimension.
- zero_initialize (bool): Flag for zero initialization.
"""
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=2,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
temporal_attention_dim_div=1,
zero_initialize=True,
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels
// num_attention_heads
// temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(
self.temporal_transformer.proj_out
)
def forward(
self,
input_tensor,
encoder_hidden_states,
attention_mask=None,
):
"""
Forward pass of the TemporalTransformer3DModel.
Args:
hidden_states (torch.Tensor): The hidden states of the model.
encoder_hidden_states (torch.Tensor, optional): The hidden states of the encoder.
attention_mask (torch.Tensor, optional): The attention mask.
Returns:
torch.Tensor: The output tensor after the forward pass.
"""
hidden_states = input_tensor
hidden_states = self.temporal_transformer(
hidden_states, encoder_hidden_states
)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
"""
A Temporal Transformer 3D Model class.
Args:
- in_channels (int): The number of input channels.
- num_attention_heads (int): Number of attention heads.
- attention_head_dim (int): Dimension of attention heads.
- num_layers (int): Number of transformer layers.
- attention_block_types (tuple): Types of attention blocks.
- dropout (float): Dropout rate.
- norm_num_groups (int): Number of groups for normalization.
- cross_attention_dim (int): Dimension for cross-attention.
- activation_fn (str): Activation function.
- attention_bias (bool): Flag for attention bias.
- upcast_attention (bool): Flag for upcast attention.
- cross_frame_attention_mode: Mode for cross-frame attention.
- temporal_position_encoding (bool): Flag for temporal position encoding.
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
"""
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
def forward(self, hidden_states, encoder_hidden_states=None):
"""
Forward pass for the TemporalTransformer3DModel.
Args:
hidden_states (torch.Tensor): The input hidden states with shape (batch_size, sequence_length, in_channels).
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states with shape (batch_size, encoder_sequence_length, in_channels).
Returns:
torch.Tensor: The output hidden states with shape (batch_size, sequence_length, in_channels).
"""
assert (
hidden_states.dim() == 5
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
batch, _, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * weight, inner_dim
)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
video_length=video_length,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
return output
class TemporalTransformerBlock(nn.Module):
"""
A Temporal Transformer Block class.
Args:
- dim (int): Dimension of the block.
- num_attention_heads (int): Number of attention heads.
- attention_head_dim (int): Dimension of attention heads.
- attention_block_types (tuple): Types of attention blocks.
- dropout (float): Dropout rate.
- cross_attention_dim (int): Dimension for cross-attention.
- activation_fn (str): Activation function.
- attention_bias (bool): Flag for attention bias.
- upcast_attention (bool): Flag for upcast attention.
- cross_frame_attention_mode: Mode for cross-frame attention.
- temporal_position_encoding (bool): Flag for temporal position encoding.
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
):
super().__init__()
attention_blocks = []
norms = []
for block_name in attention_block_types:
attention_blocks.append(
VersatileAttention(
attention_mode=block_name.split("_", maxsplit=1)[0],
cross_attention_dim=cross_attention_dim
if block_name.endswith("_Cross")
else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
video_length=None,
):
"""
Forward pass for the TemporalTransformerBlock.
Args:
hidden_states (torch.Tensor): The input hidden states with shape
(batch_size, video_length, in_channels).
encoder_hidden_states (torch.Tensor, optional): The encoder hidden states
with shape (batch_size, encoder_length, in_channels).
video_length (int, optional): The length of the video.
Returns:
torch.Tensor: The output hidden states with shape
(batch_size, video_length, in_channels).
"""
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states
if attention_block.is_cross_attention
else None,
video_length=video_length,
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class PositionalEncoding(nn.Module):
"""
Positional Encoding module for transformers.
Args:
- d_model (int): Model dimension.
- dropout (float): Dropout rate.
- max_len (int): Maximum length for positional encoding.
"""
def __init__(self, d_model, dropout=0.0, max_len=24):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
)
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
"""
Forward pass of the PositionalEncoding module.
This method takes an input tensor `x` and adds the positional encoding to it. The positional encoding is
generated based on the input tensor's shape and is added to the input tensor element-wise.
Args:
x (torch.Tensor): The input tensor to be positionally encoded.
Returns:
torch.Tensor: The positionally encoded tensor.
"""
x = x + self.pe[:, : x.size(1)]
return self.dropout(x)
class VersatileAttention(Attention):
"""
Versatile Attention class.
Args:
- attention_mode: Attention mode.
- temporal_position_encoding (bool): Flag for temporal position encoding.
- temporal_position_encoding_max_len (int): Maximum length for temporal position encoding.
"""
def __init__(
self,
*args,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=24,
**kwargs,
):
super().__init__(*args, **kwargs)
assert attention_mode == "Temporal"
self.attention_mode = attention_mode
self.is_cross_attention = kwargs.get("cross_attention_dim") is not None
self.pos_encoder = (
PositionalEncoding(
kwargs["query_dim"],
dropout=0.0,
max_len=temporal_position_encoding_max_len,
)
if (temporal_position_encoding and attention_mode == "Temporal")
else None
)
def extra_repr(self):
"""
Returns a string representation of the module with information about the attention mode and whether it is cross-attention.
Returns:
str: A string representation of the module.
"""
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_use_memory_efficient_attention_xformers(
self,
use_memory_efficient_attention_xformers: bool,
):
"""
Sets the use of memory-efficient attention xformers for the VersatileAttention class.
Args:
use_memory_efficient_attention_xformers (bool): A boolean flag indicating whether to use memory-efficient attention xformers or not.
Returns:
None
"""
if use_memory_efficient_attention_xformers:
if not is_xformers_available():
raise ModuleNotFoundError(
(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers"
),
name="xformers",
)
if not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
" only available for GPU "
)
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
processor = AttnProcessor()
else:
processor = AttnProcessor()
self.set_processor(processor)
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
**cross_attention_kwargs,
):
"""
Args:
hidden_states (`torch.Tensor`):
The hidden states to be passed through the model.
encoder_hidden_states (`torch.Tensor`, optional):
The encoder hidden states to be passed through the model.
attention_mask (`torch.Tensor`, optional):
The attention mask to be used in the model.
video_length (`int`, optional):
The length of the video.
cross_attention_kwargs (`dict`, optional):
Additional keyword arguments to be used for cross-attention.
Returns:
`torch.Tensor`:
The output tensor after passing through the model.
"""
if self.attention_mode == "Temporal":
d = hidden_states.shape[1] # d means HxW
hidden_states = rearrange(
hidden_states, "(b f) d c -> (b d) f c", f=video_length
)
if self.pos_encoder is not None:
hidden_states = self.pos_encoder(hidden_states)
encoder_hidden_states = (
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
if encoder_hidden_states is not None
else encoder_hidden_states
)
else:
raise NotImplementedError
hidden_states = self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.attention_mode == "Temporal":
hidden_states = rearrange(
hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
|