File size: 21,555 Bytes
5a510e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# pylint: disable=E1120
"""
This module contains the implementation of mutual self-attention, 
which is a type of attention mechanism used in deep learning models. 
The module includes several classes and functions related to attention mechanisms, 
such as BasicTransformerBlock and TemporalBasicTransformerBlock. 
The main purpose of this module is to provide a comprehensive attention mechanism for various tasks in deep learning, 
such as image and video processing, natural language processing, and so on.
"""

from typing import Any, Dict, Optional

import torch
from einops import rearrange

from .attention import BasicTransformerBlock, TemporalBasicTransformerBlock


def torch_dfs(model: torch.nn.Module):
    """
    Perform a depth-first search (DFS) traversal on a PyTorch model's neural network architecture.

    This function recursively traverses all the children modules of a given PyTorch model and returns a list
    containing all the modules in the model's architecture. The DFS approach starts with the input model and
    explores its children modules depth-wise before backtracking and exploring other branches.

    Args:
        model (torch.nn.Module): The root module of the neural network to traverse.

    Returns:
        list: A list of all the modules in the model's architecture.
    """
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result


class ReferenceAttentionControl:
    """
    This class is used to control the reference attention mechanism in a neural network model.
    It is responsible for managing the guidance and fusion blocks, and modifying the self-attention
    and group normalization mechanisms. The class also provides methods for registering reference hooks
    and updating/clearing the internal state of the attention control object.

    Attributes:
        unet: The UNet model associated with this attention control object.
        mode: The operating mode of the attention control object, either 'write' or 'read'.
        do_classifier_free_guidance: Whether to use classifier-free guidance in the attention mechanism.
        attention_auto_machine_weight: The weight assigned to the attention auto-machine.
        gn_auto_machine_weight: The weight assigned to the group normalization auto-machine.
        style_fidelity: The style fidelity parameter for the attention mechanism.
        reference_attn: Whether to use reference attention in the model.
        reference_adain: Whether to use reference AdaIN in the model.
        fusion_blocks: The type of fusion blocks to use in the model ('midup', 'late', or 'nofusion').
        batch_size: The batch size used for processing video frames.

    Methods:
        register_reference_hooks: Registers the reference hooks for the attention control object.
        hacked_basic_transformer_inner_forward: The modified inner forward method for the basic transformer block.
        update: Updates the internal state of the attention control object using the provided writer and dtype.
        clear: Clears the internal state of the attention control object.
    """
    def __init__(
        self,
        unet,
        mode="write",
        do_classifier_free_guidance=False,
        attention_auto_machine_weight=float("inf"),
        gn_auto_machine_weight=1.0,
        style_fidelity=1.0,
        reference_attn=True,
        reference_adain=False,
        fusion_blocks="midup",
        batch_size=1,
    ) -> None:
        """
       Initializes the ReferenceAttentionControl class.

       Args:
           unet (torch.nn.Module): The UNet model.
           mode (str, optional): The mode of operation. Defaults to "write".
           do_classifier_free_guidance (bool, optional): Whether to do classifier-free guidance. Defaults to False.
           attention_auto_machine_weight (float, optional): The weight for attention auto-machine. Defaults to infinity.
           gn_auto_machine_weight (float, optional): The weight for group-norm auto-machine. Defaults to 1.0.
           style_fidelity (float, optional): The style fidelity. Defaults to 1.0.
           reference_attn (bool, optional): Whether to use reference attention. Defaults to True.
           reference_adain (bool, optional): Whether to use reference AdaIN. Defaults to False.
           fusion_blocks (str, optional): The fusion blocks to use. Defaults to "midup".
           batch_size (int, optional): The batch size. Defaults to 1.

       Raises:
           ValueError: If the mode is not recognized.
           ValueError: If the fusion blocks are not recognized.
       """
        # 10. Modify self attention and group norm
        self.unet = unet
        assert mode in ["read", "write"]
        assert fusion_blocks in ["midup", "full"]
        self.reference_attn = reference_attn
        self.reference_adain = reference_adain
        self.fusion_blocks = fusion_blocks
        self.register_reference_hooks(
            mode,
            do_classifier_free_guidance,
            attention_auto_machine_weight,
            gn_auto_machine_weight,
            style_fidelity,
            reference_attn,
            reference_adain,
            fusion_blocks,
            batch_size=batch_size,
        )

    def register_reference_hooks(
        self,
        mode,
        do_classifier_free_guidance,
        _attention_auto_machine_weight,
        _gn_auto_machine_weight,
        _style_fidelity,
        _reference_attn,
        _reference_adain,
        _dtype=torch.float16,
        batch_size=1,
        num_images_per_prompt=1,
        device=torch.device("cpu"),
        _fusion_blocks="midup",
    ):
        """
        Registers reference hooks for the model.

        This function is responsible for registering reference hooks in the model, 
        which are used to modify the attention mechanism and group normalization layers.
        It takes various parameters as input, such as mode, 
        do_classifier_free_guidance, _attention_auto_machine_weight, _gn_auto_machine_weight, _style_fidelity,
        _reference_attn, _reference_adain, _dtype, batch_size, num_images_per_prompt, device, and _fusion_blocks.

        Args:
            self: Reference to the instance of the class.
            mode: The mode of operation for the reference hooks.
            do_classifier_free_guidance: A boolean flag indicating whether to use classifier-free guidance.
            _attention_auto_machine_weight: The weight for the attention auto-machine.
            _gn_auto_machine_weight: The weight for the group normalization auto-machine.
            _style_fidelity: The style fidelity for the reference hooks.
            _reference_attn: A boolean flag indicating whether to use reference attention.
            _reference_adain: A boolean flag indicating whether to use reference AdaIN.
            _dtype: The data type for the reference hooks.
            batch_size: The batch size for the reference hooks.
            num_images_per_prompt: The number of images per prompt for the reference hooks.
            device: The device for the reference hooks.
            _fusion_blocks: The fusion blocks for the reference hooks.

        Returns:
            None
        """
        MODE = mode
        if do_classifier_free_guidance:
            uc_mask = (
                torch.Tensor(
                    [1] * batch_size * num_images_per_prompt * 16
                    + [0] * batch_size * num_images_per_prompt * 16
                )
                .to(device)
                .bool()
            )
        else:
            uc_mask = (
                torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
                .to(device)
                .bool()
            )

        def hacked_basic_transformer_inner_forward(
            self,
            hidden_states: torch.FloatTensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            timestep: Optional[torch.LongTensor] = None,
            cross_attention_kwargs: Dict[str, Any] = None,
            class_labels: Optional[torch.LongTensor] = None,
            video_length=None,
        ):
            gate_msa = None
            shift_mlp = None
            scale_mlp = None
            gate_mlp = None

            if self.use_ada_layer_norm:  # False
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                (
                    norm_hidden_states,
                    gate_msa,
                    shift_mlp,
                    scale_mlp,
                    gate_mlp,
                ) = self.norm1(
                    hidden_states,
                    timestep,
                    class_labels,
                    hidden_dtype=hidden_states.dtype,
                )
            else:
                norm_hidden_states = self.norm1(hidden_states)

            # 1. Self-Attention
            # self.only_cross_attention = False
            cross_attention_kwargs = (
                cross_attention_kwargs if cross_attention_kwargs is not None else {}
            )
            if self.only_cross_attention:
                attn_output = self.attn1(
                    norm_hidden_states,
                    encoder_hidden_states=(
                        encoder_hidden_states if self.only_cross_attention else None
                    ),
                    attention_mask=attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                if MODE == "write":
                    self.bank.append(norm_hidden_states.clone())
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=(
                            encoder_hidden_states if self.only_cross_attention else None
                        ),
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )
                if MODE == "read":

                    bank_fea = [
                        rearrange(
                            rearrange(
                                d,
                                "(b s) l c -> b s l c",
                                b=norm_hidden_states.shape[0] // video_length,
                            )[:, 0, :, :]
                            # .unsqueeze(1)
                            .repeat(1, video_length, 1, 1),
                            "b t l c -> (b t) l c",
                        )
                        for d in self.bank
                    ]
                    motion_frames_fea = [rearrange(
                        d,
                        "(b s) l c -> b s l c",
                        b=norm_hidden_states.shape[0] // video_length,
                    )[:, 1:, :, :] for d in self.bank]
                    modify_norm_hidden_states = torch.cat(
                        [norm_hidden_states] + bank_fea, dim=1
                    )
                    hidden_states_uc = (
                        self.attn1(
                            norm_hidden_states,
                            encoder_hidden_states=modify_norm_hidden_states,
                            attention_mask=attention_mask,
                        )
                        + hidden_states
                    )
                    if do_classifier_free_guidance:
                        hidden_states_c = hidden_states_uc.clone()
                        _uc_mask = uc_mask.clone()
                        if hidden_states.shape[0] != _uc_mask.shape[0]:
                            _uc_mask = (
                                torch.Tensor(
                                    [1] * (hidden_states.shape[0] // 2)
                                    + [0] * (hidden_states.shape[0] // 2)
                                )
                                .to(device)
                                .bool()
                            )
                        hidden_states_c[_uc_mask] = (
                            self.attn1(
                                norm_hidden_states[_uc_mask],
                                encoder_hidden_states=norm_hidden_states[_uc_mask],
                                attention_mask=attention_mask,
                            )
                            + hidden_states[_uc_mask]
                        )
                        hidden_states = hidden_states_c.clone()
                    else:
                        hidden_states = hidden_states_uc

                    # self.bank.clear()
                    if self.attn2 is not None:
                        # Cross-Attention
                        norm_hidden_states = (
                            self.norm2(hidden_states, timestep)
                            if self.use_ada_layer_norm
                            else self.norm2(hidden_states)
                        )
                        hidden_states = (
                            self.attn2(
                                norm_hidden_states,
                                encoder_hidden_states=encoder_hidden_states,
                                attention_mask=attention_mask,
                            )
                            + hidden_states
                        )

                    # Feed-forward
                    hidden_states = self.ff(self.norm3(
                        hidden_states)) + hidden_states

                    # Temporal-Attention
                    if self.unet_use_temporal_attention:
                        d = hidden_states.shape[1]
                        hidden_states = rearrange(
                            hidden_states, "(b f) d c -> (b d) f c", f=video_length
                        )
                        norm_hidden_states = (
                            self.norm_temp(hidden_states, timestep)
                            if self.use_ada_layer_norm
                            else self.norm_temp(hidden_states)
                        )
                        hidden_states = (
                            self.attn_temp(norm_hidden_states) + hidden_states
                        )
                        hidden_states = rearrange(
                            hidden_states, "(b d) f c -> (b f) d c", d=d
                        )

                    return hidden_states, motion_frames_fea

            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
            hidden_states = attn_output + hidden_states

            if self.attn2 is not None:
                norm_hidden_states = (
                    self.norm2(hidden_states, timestep)
                    if self.use_ada_layer_norm
                    else self.norm2(hidden_states)
                )

                # 2. Cross-Attention
                tmp = norm_hidden_states.shape[0] // encoder_hidden_states.shape[0]
                attn_output = self.attn2(
                    norm_hidden_states,
                    # TODO: repeat这个地方需要斟酌一下
                    encoder_hidden_states=encoder_hidden_states.repeat(
                        tmp, 1, 1),
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states = attn_output + hidden_states

            # 3. Feed-forward
            norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = (
                    norm_hidden_states *
                    (1 + scale_mlp[:, None]) + shift_mlp[:, None]
                )

            ff_output = self.ff(norm_hidden_states)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output

            hidden_states = ff_output + hidden_states

            return hidden_states

        if self.reference_attn:
            if self.fusion_blocks == "midup":
                attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) +
                        torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
                ]
            elif self.fusion_blocks == "full":
                attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
                ]
            attn_modules = sorted(
                attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )

            for i, module in enumerate(attn_modules):
                module._original_inner_forward = module.forward
                if isinstance(module, BasicTransformerBlock):
                    module.forward = hacked_basic_transformer_inner_forward.__get__(
                        module,
                        BasicTransformerBlock)
                if isinstance(module, TemporalBasicTransformerBlock):
                    module.forward = hacked_basic_transformer_inner_forward.__get__(
                        module,
                        TemporalBasicTransformerBlock)

                module.bank = []
                module.attn_weight = float(i) / float(len(attn_modules))

    def update(self, writer, dtype=torch.float16):
        """
        Update the model's parameters.

        Args:
            writer (torch.nn.Module): The model's writer object.
            dtype (torch.dtype, optional): The data type to be used for the update. Defaults to torch.float16.

        Returns:
            None.
        """
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) +
                        torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, TemporalBasicTransformerBlock)
                ]
                writer_attn_modules = [
                    module
                    for module in (
                        torch_dfs(writer.unet.mid_block)
                        + torch_dfs(writer.unet.up_blocks)
                    )
                    if isinstance(module, BasicTransformerBlock)
                ]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, TemporalBasicTransformerBlock)
                ]
                writer_attn_modules = [
                    module
                    for module in torch_dfs(writer.unet)
                    if isinstance(module, BasicTransformerBlock)
                ]

            assert len(reader_attn_modules) == len(writer_attn_modules)
            reader_attn_modules = sorted(
                reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            writer_attn_modules = sorted(
                writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            for r, w in zip(reader_attn_modules, writer_attn_modules):
                r.bank = [v.clone().to(dtype) for v in w.bank]


    def clear(self):
        """
        Clears the attention bank of all reader attention modules.

        This method is used when the `reference_attn` attribute is set to `True`.
        It clears the attention bank of all reader attention modules inside the UNet
        model based on the selected `fusion_blocks` mode.

        If `fusion_blocks` is set to "midup", it searches for reader attention modules
        in both the mid block and up blocks of the UNet model. If `fusion_blocks` is set
        to "full", it searches for reader attention modules in the entire UNet model.

        It sorts the reader attention modules by the number of neurons in their
        `norm1.normalized_shape[0]` attribute in descending order. This sorting ensures
        that the modules with more neurons are cleared first.

        Finally, it iterates through the sorted list of reader attention modules and
        calls the `clear()` method on each module's `bank` attribute to clear the
        attention bank.
        """
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) +
                        torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
                ]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, (BasicTransformerBlock, TemporalBasicTransformerBlock))
                ]
            reader_attn_modules = sorted(
                reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            for r in reader_attn_modules:
                r.bank.clear()