Spaces:
Running
Running
File size: 37,102 Bytes
5a510e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 |
# pylint: disable=R0801
# pylint: disable=E1101
# pylint: disable=R0402
# pylint: disable=W1203
"""
This is the main file for the UNet3DConditionModel, which defines the UNet3D model architecture.
The UNet3D model is a 3D convolutional neural network designed for image segmentation and
other computer vision tasks. It consists of an encoder, a decoder, and skip connections between
the corresponding layers of the encoder and decoder. The model can handle 3D data and
performs well on tasks such as image segmentation, object detection, and video analysis.
This file contains the necessary imports, the main UNet3DConditionModel class, and its
methods for setting attention slice, setting gradient checkpointing, setting attention
processor, and the forward method for model inference.
The module provides a comprehensive solution for 3D image segmentation tasks and can be
easily extended for other computer vision tasks as well.
"""
from collections import OrderedDict
from dataclasses import dataclass
from os import PathLike
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import (SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME,
BaseOutput, logging)
from safetensors.torch import load_file
from .resnet import InflatedConv3d, InflatedGroupNorm
from .unet_3d_blocks import (UNetMidBlock3DCrossAttn, get_down_block,
get_up_block)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNet3DConditionOutput(BaseOutput):
"""
Data class that serves as the output of the UNet3DConditionModel.
Attributes:
sample (`torch.FloatTensor`):
A tensor representing the processed sample. The shape and nature of this tensor will depend on the
specific configuration of the model and the input data.
"""
sample: torch.FloatTensor
class UNet3DConditionModel(ModelMixin, ConfigMixin):
"""
A 3D UNet model designed to handle conditional image and video generation tasks. This model is particularly
suited for tasks that require the generation of 3D data, such as volumetric medical imaging or 3D video
generation, while incorporating additional conditioning information.
The model consists of an encoder-decoder structure with skip connections. It utilizes a series of downsampling
and upsampling blocks, with a middle block for further processing. Each block can be customized with different
types of layers and attention mechanisms.
Parameters:
sample_size (`int`, optional): The size of the input sample.
in_channels (`int`, defaults to 8): The number of input channels.
out_channels (`int`, defaults to 8): The number of output channels.
center_input_sample (`bool`, defaults to False): Whether to center the input sample.
flip_sin_to_cos (`bool`, defaults to True): Whether to flip the sine to cosine in the time embedding.
freq_shift (`int`, defaults to 0): The frequency shift for the time embedding.
down_block_types (`Tuple[str]`): A tuple of strings specifying the types of downsampling blocks.
mid_block_type (`str`): The type of middle block.
up_block_types (`Tuple[str]`): A tuple of strings specifying the types of upsampling blocks.
only_cross_attention (`Union[bool, Tuple[bool]]`): Whether to use only cross-attention.
block_out_channels (`Tuple[int]`): A tuple of integers specifying the output channels for each block.
layers_per_block (`int`, defaults to 2): The number of layers per block.
downsample_padding (`int`, defaults to 1): The padding used in downsampling.
mid_block_scale_factor (`float`, defaults to 1): The scale factor for the middle block.
act_fn (`str`, defaults to 'silu'): The activation function to be used.
norm_num_groups (`int`, defaults to 32): The number of groups for normalization.
norm_eps (`float`, defaults to 1e-5): The epsilon for normalization.
cross_attention_dim (`int`, defaults to 1280): The dimension for cross-attention.
attention_head_dim (`Union[int, Tuple[int]]`): The dimension for attention heads.
dual_cross_attention (`bool`, defaults to False): Whether to use dual cross-attention.
use_linear_projection (`bool`, defaults to False): Whether to use linear projection.
class_embed_type (`str`, optional): The type of class embedding.
num_class_embeds (`int`, optional): The number of class embeddings.
upcast_attention (`bool`, defaults to False): Whether to upcast attention.
resnet_time_scale_shift (`str`, defaults to 'default'): The time scale shift for the ResNet.
use_inflated_groupnorm (`bool`, defaults to False): Whether to use inflated group normalization.
use_motion_module (`bool`, defaults to False): Whether to use a motion module.
motion_module_resolutions (`Tuple[int]`): A tuple of resolutions for the motion module.
motion_module_mid_block (`bool`, defaults to False): Whether to use a motion module in the middle block.
motion_module_decoder_only (`bool`, defaults to False): Whether to use the motion module only in the decoder.
motion_module_type (`str`, optional): The type of motion module.
motion_module_kwargs (`dict`): Keyword arguments for the motion module.
unet_use_cross_frame_attention (`bool`, optional): Whether to use cross-frame attention in the UNet.
unet_use_temporal_attention (`bool`, optional): Whether to use temporal attention in the UNet.
use_audio_module (`bool`, defaults to False): Whether to use an audio module.
audio_attention_dim (`int`, defaults to 768): The dimension for audio attention.
The model supports various features such as gradient checkpointing, attention processors, and sliced attention
computation, making it flexible and efficient for different computational requirements and use cases.
The forward method of the model accepts a sample, timestep, and encoder hidden states as input, and it returns
the processed sample as output. The method also supports additional conditioning information such as class
labels, audio embeddings, and masks for specialized tasks.
The from_pretrained_2d class method allows loading a pre-trained 2D UNet model and adapting it for 3D tasks by
incorporating motion modules and other 3D specific features.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 8,
out_channels: int = 8,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D",
),
mid_block_type: str = "UNetMidBlock3DCrossAttn",
up_block_types: Tuple[str] = (
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: Union[int, Tuple[int]] = 8,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
use_inflated_groupnorm=False,
# Additional
use_motion_module=False,
motion_module_resolutions=(1, 2, 4, 8),
motion_module_mid_block=False,
motion_module_decoder_only=False,
motion_module_type=None,
motion_module_kwargs=None,
unet_use_cross_frame_attention=None,
unet_use_temporal_attention=None,
# audio
use_audio_module=False,
audio_attention_dim=768,
stack_enable_blocks_name=None,
stack_enable_blocks_depth=None,
):
super().__init__()
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = InflatedConv3d(
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
)
# time
self.time_proj = Timesteps(
block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(
num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [
only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
res = 2**i
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module
and (res in motion_module_resolutions)
and (not motion_module_decoder_only),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
use_audio_module=use_audio_module,
audio_attention_dim=audio_attention_dim,
depth=i,
stack_enable_blocks_name=stack_enable_blocks_name,
stack_enable_blocks_depth=stack_enable_blocks_depth,
)
self.down_blocks.append(down_block)
# mid
if mid_block_type == "UNetMidBlock3DCrossAttn":
self.mid_block = UNetMidBlock3DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module and motion_module_mid_block,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
use_audio_module=use_audio_module,
audio_attention_dim=audio_attention_dim,
depth=3,
stack_enable_blocks_name=stack_enable_blocks_name,
stack_enable_blocks_depth=stack_enable_blocks_depth,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
# count how many layers upsample the videos
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
res = 2 ** (3 - i)
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[
min(i + 1, len(block_out_channels) - 1)
]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module
and (res in motion_module_resolutions),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
use_audio_module=use_audio_module,
audio_attention_dim=audio_attention_dim,
depth=3-i,
stack_enable_blocks_name=stack_enable_blocks_name,
stack_enable_blocks_depth=stack_enable_blocks_depth,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if use_inflated_groupnorm:
self.conv_norm_out = InflatedGroupNorm(
num_channels=block_out_channels[0],
num_groups=norm_num_groups,
eps=norm_eps,
)
else:
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0],
num_groups=norm_num_groups,
eps=norm_eps,
)
self.conv_act = nn.SiLU()
self.conv_out = InflatedConv3d(
block_out_channels[0], out_channels, kernel_size=3, padding=1
)
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def attn_processors(self) -> Dict[str, AttentionProcessor]:
r"""
Returns:
`dict` of attention processors: A dictionary containing all attention processors used in the model with
indexed by its weight name.
"""
# set recursively
processors = {}
def fn_recursive_add_processors(
name: str,
module: torch.nn.Module,
processors: Dict[str, AttentionProcessor],
):
if hasattr(module, "set_processor"):
processors[f"{name}.processor"] = module.processor
for sub_name, child in module.named_children():
if "temporal_transformer" not in sub_name:
fn_recursive_add_processors(
f"{name}.{sub_name}", child, processors)
return processors
for name, module in self.named_children():
if "temporal_transformer" not in name:
fn_recursive_add_processors(name, module, processors)
return processors
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = (
num_slicable_layers * [slice_size]
if not isinstance(slice_size, list)
else slice_size
)
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i, size in enumerate(slice_size):
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(
f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(
module: torch.nn.Module, slice_size: List[int]
):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
def set_attn_processor(
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
):
r"""
Sets the attention processor to use to compute attention.
Parameters:
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
The instantiated processor class or a dictionary of processor classes that will be set as the processor
for **all** `Attention` layers.
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
processor. This is strongly recommended when setting trainable attention processors.
"""
count = len(self.attn_processors.keys())
if isinstance(processor, dict) and len(processor) != count:
raise ValueError(
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
)
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
if hasattr(module, "set_processor"):
if not isinstance(processor, dict):
module.set_processor(processor)
else:
module.set_processor(processor.pop(f"{name}.processor"))
for sub_name, child in module.named_children():
if "temporal_transformer" not in sub_name:
fn_recursive_attn_processor(
f"{name}.{sub_name}", child, processor)
for name, module in self.named_children():
if "temporal_transformer" not in name:
fn_recursive_attn_processor(name, module, processor)
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
audio_embedding: Optional[torch.Tensor] = None,
class_labels: Optional[torch.Tensor] = None,
mask_cond_fea: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
full_mask: Optional[torch.Tensor] = None,
face_mask: Optional[torch.Tensor] = None,
lip_mask: Optional[torch.Tensor] = None,
motion_scale: Optional[torch.Tensor] = None,
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
return_dict: bool = True,
# start: bool = False,
) -> Union[UNet3DConditionOutput, Tuple]:
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info(
"Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor(
[timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError(
"class_labels should be provided when num_class_embeds > 0"
)
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# pre-process
sample = self.conv_in(sample)
if mask_cond_fea is not None:
sample = sample + mask_cond_fea
# down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if (
hasattr(downsample_block, "has_cross_attention")
and downsample_block.has_cross_attention
):
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
full_mask=full_mask,
face_mask=face_mask,
lip_mask=lip_mask,
audio_embedding=audio_embedding,
motion_scale=motion_scale,
)
# print("")
else:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
# audio_embedding=audio_embedding,
)
# print("")
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
new_down_block_res_samples = ()
for down_block_res_sample, down_block_additional_residual in zip(
down_block_res_samples, down_block_additional_residuals
):
down_block_res_sample = (
down_block_res_sample + down_block_additional_residual
)
new_down_block_res_samples += (down_block_res_sample,)
down_block_res_samples = new_down_block_res_samples
# mid
sample = self.mid_block(
sample,
emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
full_mask=full_mask,
face_mask=face_mask,
lip_mask=lip_mask,
audio_embedding=audio_embedding,
motion_scale=motion_scale,
)
if mid_block_additional_residual is not None:
sample = sample + mid_block_additional_residual
# up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
down_block_res_samples = down_block_res_samples[
: -len(upsample_block.resnets)
]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if (
hasattr(upsample_block, "has_cross_attention")
and upsample_block.has_cross_attention
):
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
full_mask=full_mask,
face_mask=face_mask,
lip_mask=lip_mask,
audio_embedding=audio_embedding,
motion_scale=motion_scale,
)
else:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
upsample_size=upsample_size,
encoder_hidden_states=encoder_hidden_states,
# audio_embedding=audio_embedding,
)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return UNet3DConditionOutput(sample=sample)
@classmethod
def from_pretrained_2d(
cls,
pretrained_model_path: PathLike,
motion_module_path: PathLike,
subfolder=None,
unet_additional_kwargs=None,
mm_zero_proj_out=False,
use_landmark=True,
):
"""
Load a pre-trained 2D UNet model from a given directory.
Parameters:
pretrained_model_path (`str` or `PathLike`):
Path to the directory containing a pre-trained 2D UNet model.
dtype (`torch.dtype`, *optional*):
The data type of the loaded model. If not provided, the default data type is used.
device (`torch.device`, *optional*):
The device on which the loaded model will be placed. If not provided, the default device is used.
**kwargs (`Any`):
Additional keyword arguments passed to the model.
Returns:
`UNet3DConditionModel`:
The loaded 2D UNet model.
"""
pretrained_model_path = Path(pretrained_model_path)
motion_module_path = Path(motion_module_path)
if subfolder is not None:
pretrained_model_path = pretrained_model_path.joinpath(subfolder)
logger.info(
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
)
config_file = pretrained_model_path / "config.json"
if not (config_file.exists() and config_file.is_file()):
raise RuntimeError(
f"{config_file} does not exist or is not a file")
unet_config = cls.load_config(config_file)
unet_config["_class_name"] = cls.__name__
unet_config["down_block_types"] = [
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D",
]
unet_config["up_block_types"] = [
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
]
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
if use_landmark:
unet_config["in_channels"] = 8
unet_config["out_channels"] = 8
model = cls.from_config(unet_config, **unet_additional_kwargs)
# load the vanilla weights
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
logger.debug(
f"loading safeTensors weights from {pretrained_model_path} ..."
)
state_dict = load_file(
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
)
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
logger.debug(f"loading weights from {pretrained_model_path} ...")
state_dict = torch.load(
pretrained_model_path.joinpath(WEIGHTS_NAME),
map_location="cpu",
weights_only=True,
)
else:
raise FileNotFoundError(
f"no weights file found in {pretrained_model_path}")
# load the motion module weights
if motion_module_path.exists() and motion_module_path.is_file():
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
print(
f"Load motion module params from {motion_module_path}")
motion_state_dict = torch.load(
motion_module_path, map_location="cpu", weights_only=True
)
elif motion_module_path.suffix.lower() == ".safetensors":
motion_state_dict = load_file(motion_module_path, device="cpu")
else:
raise RuntimeError(
f"unknown file format for motion module weights: {motion_module_path.suffix}"
)
if mm_zero_proj_out:
logger.info(
"Zero initialize proj_out layers in motion module...")
new_motion_state_dict = OrderedDict()
for k in motion_state_dict:
if "proj_out" in k:
continue
new_motion_state_dict[k] = motion_state_dict[k]
motion_state_dict = new_motion_state_dict
# merge the state dicts
state_dict.update(motion_state_dict)
model_state_dict = model.state_dict()
for k in state_dict:
if k in model_state_dict:
if state_dict[k].shape != model_state_dict[k].shape:
state_dict[k] = model_state_dict[k]
# load the weights into the model
m, u = model.load_state_dict(state_dict, strict=False)
logger.debug(
f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
params = [
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
]
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
return model
|