Spaces:
Running
Running
# pylint: disable=R0801 | |
""" | |
This module contains the code for a dataset class called FaceMaskDataset, which is used to process and | |
load image data related to face masks. The dataset class inherits from the PyTorch Dataset class and | |
provides methods for data augmentation, getting items from the dataset, and determining the length of the | |
dataset. The module also includes imports for necessary libraries such as json, random, pathlib, torch, | |
PIL, and transformers. | |
""" | |
import json | |
import random | |
from pathlib import Path | |
import torch | |
from PIL import Image | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from transformers import CLIPImageProcessor | |
class FaceMaskDataset(Dataset): | |
""" | |
FaceMaskDataset is a custom dataset for face mask images. | |
Args: | |
img_size (int): The size of the input images. | |
drop_ratio (float, optional): The ratio of dropped pixels during data augmentation. Defaults to 0.1. | |
data_meta_paths (list, optional): The paths to the metadata files containing image paths and labels. Defaults to ["./data/HDTF_meta.json"]. | |
sample_margin (int, optional): The margin for sampling regions in the image. Defaults to 30. | |
Attributes: | |
img_size (int): The size of the input images. | |
drop_ratio (float): The ratio of dropped pixels during data augmentation. | |
data_meta_paths (list): The paths to the metadata files containing image paths and labels. | |
sample_margin (int): The margin for sampling regions in the image. | |
processor (CLIPImageProcessor): The image processor for preprocessing images. | |
transform (transforms.Compose): The image augmentation transform. | |
""" | |
def __init__( | |
self, | |
img_size, | |
drop_ratio=0.1, | |
data_meta_paths=None, | |
sample_margin=30, | |
): | |
super().__init__() | |
self.img_size = img_size | |
self.sample_margin = sample_margin | |
vid_meta = [] | |
for data_meta_path in data_meta_paths: | |
with open(data_meta_path, "r", encoding="utf-8") as f: | |
vid_meta.extend(json.load(f)) | |
self.vid_meta = vid_meta | |
self.length = len(self.vid_meta) | |
self.clip_image_processor = CLIPImageProcessor() | |
self.transform = transforms.Compose( | |
[ | |
transforms.Resize(self.img_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
self.cond_transform = transforms.Compose( | |
[ | |
transforms.Resize(self.img_size), | |
transforms.ToTensor(), | |
] | |
) | |
self.drop_ratio = drop_ratio | |
def augmentation(self, image, transform, state=None): | |
""" | |
Apply data augmentation to the input image. | |
Args: | |
image (PIL.Image): The input image. | |
transform (torchvision.transforms.Compose): The data augmentation transforms. | |
state (dict, optional): The random state for reproducibility. Defaults to None. | |
Returns: | |
PIL.Image: The augmented image. | |
""" | |
if state is not None: | |
torch.set_rng_state(state) | |
return transform(image) | |
def __getitem__(self, index): | |
video_meta = self.vid_meta[index] | |
video_path = video_meta["image_path"] | |
mask_path = video_meta["mask_path"] | |
face_emb_path = video_meta["face_emb"] | |
video_frames = sorted(Path(video_path).iterdir()) | |
video_length = len(video_frames) | |
margin = min(self.sample_margin, video_length) | |
ref_img_idx = random.randint(0, video_length - 1) | |
if ref_img_idx + margin < video_length: | |
tgt_img_idx = random.randint( | |
ref_img_idx + margin, video_length - 1) | |
elif ref_img_idx - margin > 0: | |
tgt_img_idx = random.randint(0, ref_img_idx - margin) | |
else: | |
tgt_img_idx = random.randint(0, video_length - 1) | |
ref_img_pil = Image.open(video_frames[ref_img_idx]) | |
tgt_img_pil = Image.open(video_frames[tgt_img_idx]) | |
tgt_mask_pil = Image.open(mask_path) | |
assert ref_img_pil is not None, "Fail to load reference image." | |
assert tgt_img_pil is not None, "Fail to load target image." | |
assert tgt_mask_pil is not None, "Fail to load target mask." | |
state = torch.get_rng_state() | |
tgt_img = self.augmentation(tgt_img_pil, self.transform, state) | |
tgt_mask_img = self.augmentation( | |
tgt_mask_pil, self.cond_transform, state) | |
tgt_mask_img = tgt_mask_img.repeat(3, 1, 1) | |
ref_img_vae = self.augmentation( | |
ref_img_pil, self.transform, state) | |
face_emb = torch.load(face_emb_path) | |
sample = { | |
"video_dir": video_path, | |
"img": tgt_img, | |
"tgt_mask": tgt_mask_img, | |
"ref_img": ref_img_vae, | |
"face_emb": face_emb, | |
} | |
return sample | |
def __len__(self): | |
return len(self.vid_meta) | |
if __name__ == "__main__": | |
data = FaceMaskDataset(img_size=(512, 512)) | |
train_dataloader = torch.utils.data.DataLoader( | |
data, batch_size=4, shuffle=True, num_workers=1 | |
) | |
for step, batch in enumerate(train_dataloader): | |
print(batch["tgt_mask"].shape) | |
break | |