import os import torch import spaces import matplotlib import numpy as np import gradio as gr from PIL import Image from transformers import pipeline from huggingface_hub import hf_hub_download from gradio_imageslider import ImageSlider from depth_anything_v2.dpt import DepthAnythingV2 from loguru import logger css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } #download { height: 62px; } """ title = "# Depth Anything: Watch V1 and V2 side by side." description1 = """Please refer to **Depth Anything V2** [paper](https://arxiv.org/abs/2406.09414) for more details.""" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' DEFAULT_V2_MODEL_NAME = "Base" DEFAULT_V1_MODEL_NAME = "Base" cmap = matplotlib.colormaps.get_cmap('Spectral_r') # -------------------------------------------------------------------- # Depth anything V1 configuration # -------------------------------------------------------------------- depth_anything_v1_name2checkpoint = { "Small": "LiheYoung/depth-anything-small-hf", "Base": "LiheYoung/depth-anything-base-hf", "Large": "LiheYoung/depth-anything-large-hf", } depth_anything_v1_pipelines = {} # -------------------------------------------------------------------- # Depth anything V2 configuration # -------------------------------------------------------------------- depth_anything_v2_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } depth_anything_v2_encoder2name = { 'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large', # 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint } depth_anything_v2_name2encoder = {v: k for k, v in depth_anything_v2_encoder2name.items()} depth_anything_v2_models = {} # -------------------------------------------------------------------- def get_v1_pipe(model_name): return pipeline(task="depth-estimation", model=depth_anything_v1_name2checkpoint[model_name], device=DEVICE) def get_v2_model(model_name): encoder = depth_anything_v2_name2encoder[model_name] model = DepthAnythingV2(**depth_anything_v2_configs[encoder]) filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") state_dict = torch.load(filepath, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() return model @spaces.GPU def predict_depth_v1(image, model_name): if model_name not in depth_anything_v1_pipelines: depth_anything_v1_pipelines[model_name] = get_v1_pipe(model_name) pipe = depth_anything_v1_pipelines[model_name] return pipe(image) @spaces.GPU def predict_depth_v2(image, model_name): if model_name not in depth_anything_v2_models: depth_anything_v2_models[model_name] = get_v2_model(model_name) model = depth_anything_v2_models[model_name] return model.infer_image(image) def compute_depth_map_v2(image, model_select: str): depth = predict_depth_v2(image[:, :, ::-1], model_select) depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 depth = depth.astype(np.uint8) colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) return colored_depth def compute_depth_map_v1(image, model_select): pil_image = Image.fromarray(image) depth = predict_depth_v1(pil_image, model_select) depth = np.array(depth["depth"]).astype(np.uint8) colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8) return colored_depth def on_submit(image, model_v1_select, model_v2_select): logger.info(f"Computing depth for V1 model: {model_v1_select} and V2 model: {model_v2_select}") colored_depth_v1 = compute_depth_map_v1(image, model_v1_select) colored_depth_v2 = compute_depth_map_v2(image, model_v2_select) return colored_depth_v1, colored_depth_v2 with gr.Blocks(css=css) as demo: gr.Markdown(title) gr.Markdown(description1) gr.Markdown("### Depth Prediction demo") with gr.Row(): model_select_v1 = gr.Dropdown(label="Depth Anything V1 Model", choices=list(depth_anything_v1_name2checkpoint.keys()), value=DEFAULT_V1_MODEL_NAME) model_select_v2 = gr.Dropdown(label="Depth Anything V2 Model", choices=list(depth_anything_v2_encoder2name.values()), value=DEFAULT_V2_MODEL_NAME) with gr.Row(): gr.Markdown() gr.Markdown("Depth Maps: V1 <-> V2") with gr.Row(): input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') depth_image_slider = ImageSlider(elem_id='img-display-output', position=0.5) submit = gr.Button(value="Compute Depth") submit.click(on_submit, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider]) example_files = os.listdir('assets/examples') example_files.sort() example_files = [os.path.join('assets/examples', filename) for filename in example_files] examples = gr.Examples( examples=example_files, inputs=[input_image, model_select_v1, model_select_v2], outputs=[depth_image_slider], fn=on_submit, cache_examples="lazy", ) if __name__ == '__main__': demo.queue().launch(share=True)