qubvel-hf's picture
qubvel-hf HF staff
Init project
c509e76
import cv2
import numpy as np
import MBD_utils
import torch
import torch.nn.functional as F
def mask_base_dewarper(image,mask):
'''
input:
image -> ndarray HxWx3 uint8
mask -> ndarray HxW uint8
return
dewarped -> ndarray HxWx3 uint8
grid (optional) -> ndarray HxWx2 -1~1
'''
## get contours
# _, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x
contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x
## get biggest contours and four corners based on Douglas-Peucker algorithm
four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours)
four_corners = MBD_utils.reorder(four_corners)
## reserve biggest contours and remove other noisy contours
new_mask = np.zeros_like(mask)
new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED)
## obtain middle points
# ratios = [0.25,0.5,0.75] # ratios = [0.125,0.25,0.375,0.5,0.625,0.75,0.875]
ratios = [0.25,0.5,0.75]
# ratios = [0.0625,0.125,0.1875,0.25,0.3125,0.375,0.4475,0.5,0.5625,0.625,0.06875,0.75,0.8125,0.875,0.9375]
middle = MBD_utils.findMiddle(corners=four_corners,mask=new_mask,points=ratios)
## all points
source_points = np.concatenate((four_corners,middle),axis=0) ## all_point = four_corners(topleft,topright,bottom)+top+bottom+left+right
## target points
h,w = image.shape[:2]
padding = 0
target_points = [[padding, padding],[w-padding, padding], [padding, h-padding],[w-padding, h-padding]]
for ratio in ratios:
target_points.append([int((w-2*padding)*ratio)+padding,padding])
for ratio in ratios:
target_points.append([int((w-2*padding)*ratio)+padding,h-padding])
for ratio in ratios:
target_points.append([padding,int((h-2*padding)*ratio)+padding])
for ratio in ratios:
target_points.append([w-padding,int((h-2*padding)*ratio)+padding])
## dewarp base on cv2
# pts1 = np.float32(source_points)
# pts2 = np.float32(target_points)
# tps = cv2.createThinPlateSplineShapeTransformer()
# matches = []
# N = pts1.shape[0]
# for i in range(0,N):
# matches.append(cv2.DMatch(i,i,0))
# pts1 = pts1.reshape(1,-1,2)
# pts2 = pts2.reshape(1,-1,2)
# tps.estimateTransformation(pts2,pts1,matches)
# dewarped = tps.warpImage(image)
## dewarp base on generated grid
source_points = source_points.reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2)
source_points = torch.from_numpy(source_points).float().cuda()
source_points = source_points.unsqueeze(0)
source_points = (source_points-0.5)*2
target_points = np.asarray(target_points).reshape(-1,2)/np.array([image.shape[:2][::-1]]).reshape(1,2)
target_points = torch.from_numpy(target_points).float()
target_points = (target_points-0.5)*2
model = MBD_utils.TPSGridGen(target_height=256,target_width=256,target_control_points=target_points)
model = model.cuda()
grid = model(source_points).view(-1,256,256,2).permute(0,3,1,2)
grid = F.interpolate(grid,(h,w),mode='bilinear').permute(0,2,3,1)
dewarped = MBD_utils.torch2cvimg(F.grid_sample(MBD_utils.cvimg2torch(image).cuda(),grid))[0]
return dewarped,grid[0].cpu().numpy()
def mask_base_cropper(image,mask):
'''
input:
image -> ndarray HxWx3 uint8
mask -> ndarray HxW uint8
return
dewarped -> ndarray HxWx3 uint8
grid (optional) -> ndarray HxWx2 -1~1
'''
## get contours
_, contours, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) ## cv2.__version__ == 3.x
# contours,hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,method=cv2.CHAIN_APPROX_SIMPLE) ## cv2.__version__ == 4.x
## get biggest contours and four corners based on Douglas-Peucker algorithm
four_corners, maxArea, contour= MBD_utils.DP_algorithm(contours)
four_corners = MBD_utils.reorder(four_corners)
## reserve biggest contours and remove other noisy contours
new_mask = np.zeros_like(mask)
new_mask = cv2.drawContours(new_mask,[contour],-1,255,cv2.FILLED)
## 最小外接矩形
rect = cv2.minAreaRect(contour) # 得到最小外接矩形的(中心(x,y), (宽,高), 旋转角度)
box = cv2.boxPoints(rect) # cv2.boxPoints(rect) for OpenCV 3.x 获取最小外接矩形的4个顶点坐标
box = np.int0(box)
box = box.reshape((4,1,2))