|
import gradio as gr |
|
import numpy as np |
|
import random |
|
import generation_sdxl |
|
import functools |
|
from diffusers import DiffusionPipeline, UNet2DConditionModel |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.max_memory_allocated(device=device) |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe = pipe.to(device) |
|
else: |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) |
|
pipe = pipe.to(device) |
|
|
|
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sdxl-cfg-distill-unet") |
|
pipe.unet = unet |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
prompt = ['Long-exposure night photography of a starry sky over a mountain range, with light trails.'] |
|
|
|
|
|
text_encoders = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizers = [pipe.tokenizer, pipe.tokenizer_2] |
|
|
|
compute_embeddings_fn = functools.partial( |
|
generation_sdxl.compute_embeddings, |
|
proportion_empty_prompts=0, |
|
text_encoders=text_encoders, |
|
tokenizers=tokenizers, |
|
) |
|
images = generation_sdxl.sample_deterministic( |
|
pipe, |
|
prompt, |
|
num_inference_steps=4, |
|
generator=generator, |
|
guidance_scale=7.0, |
|
is_sdxl=True, |
|
timesteps=[249, 499, 699, 999], |
|
use_dynamic_guidance=False, |
|
tau1=1.0, |
|
tau2=1.0, |
|
compute_embeddings_fn=compute_embeddings_fn |
|
)[0] |
|
|
|
return images |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
if torch.cuda.is_available(): |
|
power_device = "GPU" |
|
else: |
|
power_device = "CPU" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f""" |
|
# Text-to-Image Gradio Template |
|
Currently running on {power_device}. |
|
""") |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=False, |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=512, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=0.0, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=12, |
|
step=1, |
|
value=2, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [prompt] |
|
) |
|
|
|
run_button.click( |
|
fn = infer, |
|
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs = [result] |
|
) |
|
|
|
demo.queue().launch(share=True) |
|
|