import torch import copy import random import numpy as np # Diffusion utils # ------------------------------------------------------------------------ def encode_prompt(prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train=True): prompt_embeds_list = [] captions = [] for caption in prompt_batch: if random.random() < proportion_empty_prompts: captions.append("") elif isinstance(caption, str): captions.append(caption) elif isinstance(caption, (list, np.ndarray)): # take a random caption if there are multiple captions.append(random.choice(caption) if is_train else caption[0]) with torch.no_grad(): for tokenizer, text_encoder in zip(tokenizers, text_encoders): text_inputs = tokenizer( captions, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = text_encoder( text_input_ids.to(text_encoder.device), output_hidden_states=True, ) # We are only ALWAYS interested in the pooled output of the final text encoder pooled_prompt_embeds = prompt_embeds[0] prompt_embeds = prompt_embeds.hidden_states[-2] bs_embed, seq_len, _ = prompt_embeds.shape prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) prompt_embeds_list.append(prompt_embeds) prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) return prompt_embeds, pooled_prompt_embeds def compute_embeddings( prompt_batch, original_sizes, crop_coords, proportion_empty_prompts, text_encoders, tokenizers, is_train=True, device='cuda' ): target_size = (1024, 1024) original_sizes = original_sizes #list(map(list, zip(*original_sizes))) crops_coords_top_left = crop_coords #list(map(list, zip(*crop_coords))) original_sizes = torch.tensor(original_sizes, dtype=torch.long) crops_coords_top_left = torch.tensor(crops_coords_top_left, dtype=torch.long) prompt_embeds, pooled_prompt_embeds = encode_prompt( prompt_batch, text_encoders, tokenizers, proportion_empty_prompts, is_train ) add_text_embeds = pooled_prompt_embeds # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids add_time_ids = list(target_size) add_time_ids = torch.tensor([add_time_ids]) add_time_ids = add_time_ids.repeat(len(prompt_batch), 1) add_time_ids = torch.cat([original_sizes, crops_coords_top_left, add_time_ids], dim=-1) add_time_ids = add_time_ids.to(device, dtype=prompt_embeds.dtype) prompt_embeds = prompt_embeds.to(device) add_text_embeds = add_text_embeds.to(device) unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs} def extract_into_tensor(a, t, x_shape): b, *_ = t.shape out = a.gather(-1, t) return out.reshape(b, *((1,) * (len(x_shape) - 1))) def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32): """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 Args: timesteps (`torch.Tensor`): generate embedding vectors at these timesteps embedding_dim (`int`, *optional*, defaults to 512): dimension of the embeddings to generate dtype: data type of the generated embeddings Returns: `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` """ assert len(w.shape) == 1 w = w * 1000.0 half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas): sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape) alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape) sigmas = extract_into_tensor(sigmas, timesteps, sample.shape) alphas = extract_into_tensor(alphas, timesteps, sample.shape) # Set hard boundaries to ensure equivalence with forward (direct) CD alphas_s[boundary_timesteps == 0] = 1.0 sigmas_s[boundary_timesteps == 0] = 0.0 if prediction_type == "epsilon": pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step elif prediction_type == "v_prediction": assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment" pred_x_0 = alphas * sample - sigmas * model_output else: raise ValueError(f"Prediction type {prediction_type} currently not supported.") return pred_x_0 class DDIMSolver: def __init__( self, alpha_cumprods, timesteps=1000, ddim_timesteps=50, num_endpoints=1, num_inverse_endpoints=1, max_inverse_timestep_index=49, endpoints=None, inverse_endpoints=None ): # DDIM sampling parameters step_ratio = timesteps // ddim_timesteps self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype( np.int64) - 1 # [19, ..., 999] self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps] self.ddim_alpha_cumprods_prev = np.asarray( [alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist() ) self.ddim_alpha_cumprods_next = np.asarray( alpha_cumprods[self.ddim_timesteps[1:]].tolist() + [0.0] ) # convert to torch tensors self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long() self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods) self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev) self.ddim_alpha_cumprods_next = torch.from_numpy(self.ddim_alpha_cumprods_next) # Set endpoints for direct CTM if endpoints is None: timestep_interval = ddim_timesteps // num_endpoints + int(ddim_timesteps % num_endpoints > 0) endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1 self.endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist()) else: self.endpoints = torch.tensor([int(endpoint) for endpoint in endpoints.split(',')]) assert len(self.endpoints) == num_endpoints # Set endpoints for inverse CTM if inverse_endpoints is None: timestep_interval = ddim_timesteps // num_inverse_endpoints + int( ddim_timesteps % num_inverse_endpoints > 0) inverse_endpoint_idxs = torch.arange(timestep_interval, ddim_timesteps, timestep_interval) - 1 inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index]) self.inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs] else: self.inverse_endpoints = torch.tensor([int(endpoint) for endpoint in inverse_endpoints.split(',')]) assert len(self.inverse_endpoints) == num_inverse_endpoints def to(self, device): self.endpoints = self.endpoints.to(device) self.inverse_endpoints = self.inverse_endpoints.to(device) self.ddim_timesteps = self.ddim_timesteps.to(device) self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device) self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device) self.ddim_alpha_cumprods_next = self.ddim_alpha_cumprods_next.to(device) return self def ddim_step(self, pred_x0, pred_noise, timestep_index): alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape) dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt return x_prev def inverse_ddim_step(self, pred_x0, pred_noise, timestep_index): alpha_cumprod_next = extract_into_tensor(self.ddim_alpha_cumprods_next, timestep_index, pred_x0.shape) dir_xt = (1.0 - alpha_cumprod_next).sqrt() * pred_noise x_next = alpha_cumprod_next.sqrt() * pred_x0 + dir_xt return x_next # ------------------------------------------------------------------------ # Distillation specific # ------------------------------------------------------------------------ def inverse_sample_deterministic( pipe, images, prompt, generator=None, num_scales=50, num_inference_steps=1, timesteps=None, start_timestep=19, max_inverse_timestep_index=49, return_start_latent=False, guidance_scale=None, # Used only if the student has w_embedding compute_embeddings_fn=None, is_sdxl=False, inverse_endpoints=None, seed=0, ): # assert isinstance(pipe, StableDiffusionImg2ImgPipeline), f"Does not support the pipeline {type(pipe)}" if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) device = pipe._execution_device # Prepare text embeddings if compute_embeddings_fn is not None: if is_sdxl: orig_size = [(1024, 1024)] * len(prompt) crop_coords = [(0, 0)] * len(prompt) encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords) prompt_embeds = encoded_text.pop("prompt_embeds") else: prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"] encoded_text = {} prompt_embeds = prompt_embeds.to(pipe.unet.dtype) else: prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0] encoded_text = {} assert prompt_embeds.dtype == pipe.unet.dtype # Prepare the DDIM solver endpoints = ','.join(['0'] + inverse_endpoints.split(',')[:-1]) if inverse_endpoints is not None else None solver = DDIMSolver( pipe.scheduler.alphas_cumprod.cpu().numpy(), timesteps=pipe.scheduler.num_train_timesteps, ddim_timesteps=num_scales, num_endpoints=num_inference_steps, num_inverse_endpoints=num_inference_steps, max_inverse_timestep_index=max_inverse_timestep_index, endpoints=endpoints, inverse_endpoints=inverse_endpoints ).to(device) if timesteps is None: timesteps = solver.inverse_endpoints.flip(0) boundary_timesteps = solver.endpoints.flip(0) else: timesteps, boundary_timesteps = timesteps, timesteps boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]] boundary_timesteps[-1] = 999 timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps) alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device) sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device) # 5. Prepare latent variables num_channels_latents = pipe.unet.config.in_channels start_latents = pipe.prepare_latents( images, timesteps[0], batch_size, 1, prompt_embeds.dtype, device, generator=torch.Generator().manual_seed(seed), ) latents = start_latents.clone() if guidance_scale is not None: w = torch.ones(batch_size) * guidance_scale w_embedding = guidance_scale_embedding(w, embedding_dim=512) w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) else: w_embedding = None for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)): # predict the noise residual noise_pred = pipe.unet( latents.to(prompt_embeds.dtype), t, encoder_hidden_states=prompt_embeds, return_dict=False, timestep_cond=w_embedding, added_cond_kwargs=encoded_text, )[0] latents = predicted_origin( noise_pred, torch.tensor([t] * len(latents), device=device), torch.tensor([s] * len(latents), device=device), latents, pipe.scheduler.config.prediction_type, alpha_schedule, sigma_schedule, ).to(prompt_embeds.dtype) if return_start_latent: return latents, start_latents else: return latents def linear_schedule_old(t, guidance_scale, tau1, tau2): t = t / 1000 if t <= tau1: gamma = 1.0 elif t >= tau2: gamma = 0.0 else: gamma = (tau2 - t) / (tau2 - tau1) return gamma * guidance_scale @torch.no_grad() def sample_deterministic( pipe, prompt, latents=None, generator=None, num_scales=50, num_inference_steps=1, timesteps=None, start_timestep=19, max_inverse_timestep_index=49, return_latent=False, guidance_scale=None, # Used only if the student has w_embedding compute_embeddings_fn=None, is_sdxl=False, endpoints=None, use_dynamic_guidance=False, tau1=0.7, tau2=0.7, amplify_prompt=None, ): # assert isinstance(pipe, StableDiffusionPipeline), f"Does not support the pipeline {type(pipe)}" height = pipe.unet.config.sample_size * pipe.vae_scale_factor width = pipe.unet.config.sample_size * pipe.vae_scale_factor # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) device = pipe._execution_device # Prepare text embeddings if compute_embeddings_fn is not None: if is_sdxl: orig_size = [(1024, 1024)] * len(prompt) crop_coords = [(0, 0)] * len(prompt) encoded_text = compute_embeddings_fn(prompt, orig_size, crop_coords) prompt_embeds = encoded_text.pop("prompt_embeds") if amplify_prompt is not None: orig_size = [(1024, 1024)] * len(amplify_prompt) crop_coords = [(0, 0)] * len(amplify_prompt) encoded_text_old = compute_embeddings_fn(amplify_prompt, orig_size, crop_coords) amplify_prompt_embeds = encoded_text_old.pop("prompt_embeds") else: prompt_embeds = compute_embeddings_fn(prompt)["prompt_embeds"] encoded_text = {} prompt_embeds = prompt_embeds.to(pipe.unet.dtype) else: prompt_embeds = pipe.encode_prompt(prompt, device, 1, False)[0] encoded_text = {} assert prompt_embeds.dtype == pipe.unet.dtype # Prepare the DDIM solver inverse_endpoints = ','.join(endpoints.split(',')[1:] + ['999']) if endpoints is not None else None solver = DDIMSolver( pipe.scheduler.alphas_cumprod.numpy(), timesteps=pipe.scheduler.num_train_timesteps, ddim_timesteps=num_scales, num_endpoints=num_inference_steps, num_inverse_endpoints=num_inference_steps, max_inverse_timestep_index=max_inverse_timestep_index, endpoints=endpoints, inverse_endpoints=inverse_endpoints ).to(device) prompt_embeds_init = copy.deepcopy(prompt_embeds) if timesteps is None: timesteps = solver.inverse_endpoints.flip(0) boundary_timesteps = solver.endpoints.flip(0) else: timesteps, boundary_timesteps = copy.deepcopy(timesteps), copy.deepcopy(timesteps) timesteps.reverse() boundary_timesteps.reverse() boundary_timesteps = boundary_timesteps[1:] + [boundary_timesteps[0]] boundary_timesteps[-1] = 0 timesteps, boundary_timesteps = torch.tensor(timesteps), torch.tensor(boundary_timesteps) alpha_schedule = torch.sqrt(pipe.scheduler.alphas_cumprod).to(device) sigma_schedule = torch.sqrt(1 - pipe.scheduler.alphas_cumprod).to(device) # 5. Prepare latent variables if latents is None: num_channels_latents = pipe.unet.config.in_channels latents = pipe.prepare_latents( batch_size, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, None, ) assert latents.dtype == pipe.unet.dtype else: latents = latents.to(prompt_embeds.dtype) if guidance_scale is not None: w = torch.ones(batch_size) * guidance_scale w_embedding = guidance_scale_embedding(w, embedding_dim=512) w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) else: w_embedding = None for i, (t, s) in enumerate(zip(timesteps, boundary_timesteps)): if use_dynamic_guidance: if not isinstance(t, int): t_item = t.item() if t_item > tau1 * 1000 and amplify_prompt is not None: prompt_embeds = amplify_prompt_embeds else: prompt_embeds = prompt_embeds_init guidance_scale = linear_schedule_old(t_item, w, tau1=tau1, tau2=tau2) guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents)) w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=512) w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype) # predict the noise residual noise_pred = pipe.unet( latents, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=None, return_dict=False, timestep_cond=w_embedding, added_cond_kwargs=encoded_text, )[0] latents = predicted_origin( noise_pred, torch.tensor([t] * len(noise_pred)).to(device), torch.tensor([s] * len(noise_pred)).to(device), latents, pipe.scheduler.config.prediction_type, alpha_schedule, sigma_schedule, ).to(pipe.unet.dtype) pipe.vae.to(torch.float32) image = pipe.vae.decode(latents.to(torch.float32) / pipe.vae.config.scaling_factor, return_dict=False)[0] do_denormalize = [True] * image.shape[0] image = pipe.image_processor.postprocess(image, output_type="pil", do_denormalize=do_denormalize) if return_latent: return image, latents else: return image # ------------------------------------------------------------------------