quyanh commited on
Commit
7aee96a
1 Parent(s): d1ceaed

add format RM

Browse files
Files changed (1) hide show
  1. README.md +10 -45
README.md CHANGED
@@ -1,45 +1,10 @@
1
- # VITS for Japanese
2
-
3
- *VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech*
4
-
5
- *Several recent end-to-end text-to-speech (TTS) models enabling single-stage training and parallel sampling have been proposed, but their sample quality does not match that of two-stage TTS systems. In the repository, I will introduce a VITS model for Japanese on pytorch version 2.0.0 that customed from [VITS model](https://github.com/jaywalnut310/vits).*
6
-
7
- We also provide the [pretrained models](https://drive.google.com/file/d/13LShhGTpVhwQTWonR-mzzZA4-burHzVD/view?usp=sharing).
8
- <table style="width:100%">
9
- <tr>
10
- <th>VITS at training</th>
11
- <th>VITS at inference</th>
12
- </tr>
13
- <tr>
14
- <td><img src="resources/fig_1a.png" alt="VITS at training" height="400"></td>
15
- <td><img src="resources/fig_1b.png" alt="VITS at inference" height="400"></td>
16
- </tr>
17
- </table>
18
-
19
-
20
- ## Pre-requisites
21
- 0. Python >= 3.6
22
- 0. Clone this repository
23
- 0. Install python requirements. Please refer [requirements.txt](requirements.txt)
24
- 0. Download datasets
25
- 1. Download and extract the [Japanese Speech dataset](https://sites.google.com/site/shinnosuketakamichi/publication/jsut), then choose `basic5000` dataset and move to `jp_dataset` folder.
26
- 0. Build Monotonic Alignment Search and run preprocessing if you use your own datasets.
27
- ```sh
28
- # Cython-version Monotonoic Alignment Search
29
- cd monotonic_align
30
- python setup.py build_ext --inplace
31
-
32
- # Preprocessing (g2p) for your own datasets. Preprocessed phonemes for LJ Speech and VCTK have been already provided.
33
- # python preprocess.py --text_index 1 --filelists filelists/jp_audio_text_train_filelist.txt filelists/jp_audio_text_val_filelist.txt filelists/jp_audio_text_test_filelist.txt
34
- ```
35
-
36
-
37
- ## Training Example
38
- ```sh
39
- # JP Speech
40
- python train.py -c configs/jp_base.json -m jp_base
41
- ```
42
-
43
-
44
- ## Inference Example
45
- See [vits_apply.ipynb](vits_apply.ipynb)
 
1
+ title: Text to Speech for Japanes
2
+ emoji: 🏢
3
+ colorFrom: purple
4
+ colorTo: gray
5
+ sdk: gradio
6
+ sdk_version: 3.29.0
7
+ app_file: app.py
8
+ pinned: false
9
+ tags:
10
+ - vits-tts