from scipy.io.wavfile import read import torch import numpy as np import os from multiprocessing import Pool from tqdm import tqdm # Change here base="jp_dataset/basic5000/wav" hann_window = {} def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) # data, sampling_rate = librosa.load(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): if torch.min(y) < -1.: print('min value is ', torch.min(y)) if torch.max(y) > 1.: print('max value is ', torch.max(y)) global hann_window dtype_device = str(y.dtype) + '_' + str(y.device) wnsize_dtype_device = str(win_size) + '_' + dtype_device if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') y = y.squeeze(1) spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) return spec def get_audio(filename): max_wave_length = 32768.0 filter_length = 1024 hop_length = 256 win_length = 1024 audio, sampling_rate = load_wav_to_torch(filename) audio_norm = audio / max_wave_length audio_norm = audio_norm.unsqueeze(0) spec_filename = filename.replace(".wav", ".spec.pt") spec = spectrogram_torch(audio_norm, filter_length, sampling_rate, hop_length, win_length, center=False) spec = torch.squeeze(spec, 0) torch.save(spec, spec_filename) if __name__=="__main__": waves = [] batch_size = 16 for wav_name in os.listdir(base): wav_path = os.path.join(base, wav_name) if wav_path.endswith(".wav"): waves.append(wav_path) with Pool(batch_size) as p: print(list((tqdm(p.imap(get_audio, waves), total=len(waves)))))