tts-9nine / infer.py
qxdn's picture
init space
3787550
raw
history blame
8.45 kB
"""
版本管理、兼容推理及模型加载实现。
版本说明:
1. 版本号与github的release版本号对应,使用哪个release版本训练的模型即对应其版本号
2. 请在模型的config.json中显示声明版本号,添加一个字段"version" : "你的版本号"
特殊版本说明:
1.1.1-fix: 1.1.1版本训练的模型,但是在推理时使用dev的日语修复
1.1.1-dev: dev开发
2.1:当前版本
"""
import torch
import commons
from text import cleaned_text_to_sequence, get_bert
from emo_gen import get_emo
from text.cleaner import clean_text
import utils
from models import SynthesizerTrn
from text.symbols import symbols
# 当前版本信息
latest_version = "2.1"
def get_net_g(model_path: str, version: str, device: str, hps):
if version != latest_version:
pass
else:
# 当前版本模型 net_g
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_path, net_g, None, skip_optimizer=True)
return net_g
def get_text(text, reference_audio, emotion, language_str, hps, device):
# 在此处实现当前版本的get_text
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert_ori
ja_bert = torch.zeros(1024, len(phone))
en_bert = torch.zeros(1024, len(phone))
elif language_str == "JP":
bert = torch.zeros(1024, len(phone))
ja_bert = bert_ori
en_bert = torch.zeros(1024, len(phone))
elif language_str == "EN":
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(1024, len(phone))
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
emo = (
torch.from_numpy(get_emo(reference_audio))
if reference_audio
else torch.Tensor([emotion])
)
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, en_bert, emo, phone, tone, language
def infer(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
version = hps.version if hasattr(hps, "version") else latest_version
# 非当前版本,根据版本号选择合适的infer
if version != latest_version:
pass
# 在此处实现当前版本的推理
bert, ja_bert, en_bert, emo, phones, tones, lang_ids = get_text(
text, reference_audio, emotion, language, hps, device
)
if skip_start:
phones = phones[1:]
tones = tones[1:]
lang_ids = lang_ids[1:]
bert = bert[:, 1:]
ja_bert = ja_bert[:, 1:]
en_bert = en_bert[:, 1:]
if skip_end:
phones = phones[:-1]
tones = tones[:-1]
lang_ids = lang_ids[:-1]
bert = bert[:, :-1]
ja_bert = ja_bert[:, :-1]
en_bert = en_bert[:, :-1]
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
emo = emo.to(device).unsqueeze(0)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio
def infer_multilang(
text,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
sid,
language,
hps,
net_g,
device,
reference_audio=None,
emotion=None,
skip_start=False,
skip_end=False,
):
bert, ja_bert, en_bert, emo, phones, tones, lang_ids = [], [], [], [], [], [], []
# bert, ja_bert, en_bert, phones, tones, lang_ids = get_text(
# text, language, hps, device
# )
for idx, (txt, lang) in enumerate(zip(text, language)):
skip_start = (idx != 0) or (skip_start and idx == 0)
skip_end = (idx != len(text) - 1) or (skip_end and idx == len(text) - 1)
(
temp_bert,
temp_ja_bert,
temp_en_bert,
temp_emo,
temp_phones,
temp_tones,
temp_lang_ids,
) = get_text(txt, reference_audio, emotion, language, hps, device)
if skip_start:
temp_bert = temp_bert[:, 1:]
temp_ja_bert = temp_ja_bert[:, 1:]
temp_en_bert = temp_en_bert[:, 1:]
temp_emo = temp_emo[:, 1:]
temp_phones = temp_phones[1:]
temp_tones = temp_tones[1:]
temp_lang_ids = temp_lang_ids[1:]
if skip_end:
temp_bert = temp_bert[:, :-1]
temp_ja_bert = temp_ja_bert[:, :-1]
temp_en_bert = temp_en_bert[:, :-1]
temp_emo = temp_emo[:, :-1]
temp_phones = temp_phones[:-1]
temp_tones = temp_tones[:-1]
temp_lang_ids = temp_lang_ids[:-1]
bert.append(temp_bert)
ja_bert.append(temp_ja_bert)
en_bert.append(temp_en_bert)
emo.append(temp_emo)
phones.append(temp_phones)
tones.append(temp_tones)
lang_ids.append(temp_lang_ids)
bert = torch.concatenate(bert, dim=1)
ja_bert = torch.concatenate(ja_bert, dim=1)
en_bert = torch.concatenate(en_bert, dim=1)
emo = torch.concatenate(emo, dim=1)
phones = torch.concatenate(phones, dim=0)
tones = torch.concatenate(tones, dim=0)
lang_ids = torch.concatenate(lang_ids, dim=0)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
en_bert = en_bert.to(device).unsqueeze(0)
emo = emo.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
emo,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers, ja_bert, en_bert, emo
if torch.cuda.is_available():
torch.cuda.empty_cache()
return audio