Spaces:
Running
Running
import os | |
from joblib import load | |
from numpy import append, expand_dims | |
from pandas import read_json, to_datetime, Timedelta | |
from tensorflow.keras.models import load_model | |
import cython | |
cdef class Utilities: | |
async def cryptocurrency_prediction_utils(self, | |
int days, int sequence_length, str model_name) -> tuple: | |
cdef str model_path = os.path.join('./models', f'{model_name}.keras') | |
model = load_model(model_path) | |
cdef str dataframe_path = os.path.join('./posttrained', f'{model_name}-posttrained.json') | |
dataframe = read_json(dataframe_path) | |
dataframe.set_index('Date', inplace=True) | |
minmax_scaler = load(os.path.join('./pickles', f'{model_name}_minmax_scaler.pickle')) | |
standard_scaler = load(os.path.join('./pickles', f'{model_name}_standard_scaler.pickle')) | |
# Prediction | |
lst_seq = dataframe[-sequence_length:].values | |
lst_seq = expand_dims(lst_seq, axis=0) | |
cdef dict predicted_prices = {} | |
last_date = to_datetime(dataframe.index[-1]) | |
for _ in range(days): | |
predicted_price = model.predict(lst_seq) | |
last_date = last_date + Timedelta(days=1) | |
predicted_prices[last_date] = minmax_scaler.inverse_transform(predicted_price) | |
predicted_prices[last_date] = standard_scaler.inverse_transform(predicted_prices[last_date]) | |
lst_seq = append(lst_seq[:, 1:, :], [predicted_price], axis=1) | |
predictions = [ | |
{'date': date.strftime('%Y-%m-%d'), 'price': float(price)} \ | |
for date, price in predicted_prices.items() | |
] | |
# Actual | |
df_date = dataframe.index[-sequence_length:].values | |
df_date = [to_datetime(date) for date in df_date] | |
dataframe[['Close']] = minmax_scaler.inverse_transform(dataframe) | |
dataframe[['Close']] = standard_scaler.inverse_transform(dataframe) | |
df_close = dataframe.iloc[-sequence_length:]['Close'].values | |
actuals = [ | |
{'date': date.strftime('%Y-%m-%d'), 'price': close} \ | |
for date, close in zip(df_date, df_close) | |
] | |
return actuals, predictions | |