Spaces:
Running
Running
import torch | |
import utils | |
from utils.hparams import hparams | |
from .diff.net import DiffNet | |
from .diff.shallow_diffusion_tts import GaussianDiffusion, OfflineGaussianDiffusion | |
from .diffspeech_task import DiffSpeechTask | |
from vocoders.base_vocoder import get_vocoder_cls, BaseVocoder | |
from modules.fastspeech.pe import PitchExtractor | |
from modules.fastspeech.fs2 import FastSpeech2 | |
from modules.diffsinger_midi.fs2 import FastSpeech2MIDI | |
from modules.fastspeech.tts_modules import mel2ph_to_dur | |
from usr.diff.candidate_decoder import FFT | |
from utils.pitch_utils import denorm_f0 | |
from tasks.tts.fs2_utils import FastSpeechDataset | |
from tasks.tts.fs2 import FastSpeech2Task | |
import numpy as np | |
import os | |
import torch.nn.functional as F | |
DIFF_DECODERS = { | |
'wavenet': lambda hp: DiffNet(hp['audio_num_mel_bins']), | |
'fft': lambda hp: FFT( | |
hp['hidden_size'], hp['dec_layers'], hp['dec_ffn_kernel_size'], hp['num_heads']), | |
} | |
class DiffSingerTask(DiffSpeechTask): | |
def __init__(self): | |
super(DiffSingerTask, self).__init__() | |
self.dataset_cls = FastSpeechDataset | |
self.vocoder: BaseVocoder = get_vocoder_cls(hparams)() | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
self.pe = PitchExtractor().cuda() | |
utils.load_ckpt(self.pe, hparams['pe_ckpt'], 'model', strict=True) | |
self.pe.eval() | |
def build_tts_model(self): | |
# import torch | |
# from tqdm import tqdm | |
# v_min = torch.ones([80]) * 100 | |
# v_max = torch.ones([80]) * -100 | |
# for i, ds in enumerate(tqdm(self.dataset_cls('train'))): | |
# v_max = torch.max(torch.max(ds['mel'].reshape(-1, 80), 0)[0], v_max) | |
# v_min = torch.min(torch.min(ds['mel'].reshape(-1, 80), 0)[0], v_min) | |
# if i % 100 == 0: | |
# print(i, v_min, v_max) | |
# print('final', v_min, v_max) | |
mel_bins = hparams['audio_num_mel_bins'] | |
self.model = GaussianDiffusion( | |
phone_encoder=self.phone_encoder, | |
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), | |
timesteps=hparams['timesteps'], | |
K_step=hparams['K_step'], | |
loss_type=hparams['diff_loss_type'], | |
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], | |
) | |
if hparams['fs2_ckpt'] != '': | |
utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) | |
# self.model.fs2.decoder = None | |
for k, v in self.model.fs2.named_parameters(): | |
v.requires_grad = False | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
energy = sample['energy'] | |
# fs2_mel = sample['fs2_mels'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
mel2ph = sample['mel2ph'] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = utils.tensors_to_scalars(outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
model_out = self.model( | |
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, ref_mels=None, infer=True) | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel | |
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel | |
else: | |
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) | |
pred_f0 = model_out.get('f0_denorm') | |
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') | |
self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') | |
return outputs | |
class ShallowDiffusionOfflineDataset(FastSpeechDataset): | |
def __getitem__(self, index): | |
sample = super(ShallowDiffusionOfflineDataset, self).__getitem__(index) | |
item = self._get_item(index) | |
if self.prefix != 'train' and hparams['fs2_ckpt'] != '': | |
fs2_ckpt = os.path.dirname(hparams['fs2_ckpt']) | |
item_name = item['item_name'] | |
fs2_mel = torch.Tensor(np.load(f'{fs2_ckpt}/P_mels_npy/{item_name}.npy')) # ~M generated by FFT-singer. | |
sample['fs2_mel'] = fs2_mel | |
return sample | |
def collater(self, samples): | |
batch = super(ShallowDiffusionOfflineDataset, self).collater(samples) | |
if self.prefix != 'train' and hparams['fs2_ckpt'] != '': | |
batch['fs2_mels'] = utils.collate_2d([s['fs2_mel'] for s in samples], 0.0) | |
return batch | |
class DiffSingerOfflineTask(DiffSingerTask): | |
def __init__(self): | |
super(DiffSingerOfflineTask, self).__init__() | |
self.dataset_cls = ShallowDiffusionOfflineDataset | |
def build_tts_model(self): | |
mel_bins = hparams['audio_num_mel_bins'] | |
self.model = OfflineGaussianDiffusion( | |
phone_encoder=self.phone_encoder, | |
out_dims=mel_bins, denoise_fn=DIFF_DECODERS[hparams['diff_decoder_type']](hparams), | |
timesteps=hparams['timesteps'], | |
K_step=hparams['K_step'], | |
loss_type=hparams['diff_loss_type'], | |
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'], | |
) | |
# if hparams['fs2_ckpt'] != '': | |
# utils.load_ckpt(self.model.fs2, hparams['fs2_ckpt'], 'model', strict=True) | |
# self.model.fs2.decoder = None | |
def run_model(self, model, sample, return_output=False, infer=False): | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
energy = sample['energy'] | |
fs2_mel = None #sample['fs2_mels'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
if hparams['pitch_type'] == 'cwt': | |
cwt_spec = sample[f'cwt_spec'] | |
f0_mean = sample['f0_mean'] | |
f0_std = sample['f0_std'] | |
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) | |
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, | |
ref_mels=[target, fs2_mel], f0=f0, uv=uv, energy=energy, infer=infer) | |
losses = {} | |
if 'diff_loss' in output: | |
losses['mel'] = output['diff_loss'] | |
# self.add_dur_loss(output['dur'], mel2ph, txt_tokens, losses=losses) | |
# if hparams['use_pitch_embed']: | |
# self.add_pitch_loss(output, sample, losses) | |
if hparams['use_energy_embed']: | |
self.add_energy_loss(output['energy_pred'], energy, losses) | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
energy = sample['energy'] | |
# fs2_mel = sample['fs2_mels'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
mel2ph = sample['mel2ph'] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = utils.tensors_to_scalars(outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
fs2_mel = sample['fs2_mels'] | |
model_out = self.model( | |
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, energy=energy, | |
ref_mels=[None, fs2_mel], infer=True) | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel | |
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel | |
else: | |
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) | |
pred_f0 = model_out.get('f0_denorm') | |
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') | |
self.plot_mel(batch_idx, sample['mels'], fs2_mel, name=f'fs2mel_{batch_idx}') | |
return outputs | |
def test_step(self, sample, batch_idx): | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
txt_tokens = sample['txt_tokens'] | |
energy = sample['energy'] | |
if hparams['profile_infer']: | |
pass | |
else: | |
mel2ph, uv, f0 = None, None, None | |
if hparams['use_gt_dur']: | |
mel2ph = sample['mel2ph'] | |
if hparams['use_gt_f0']: | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
fs2_mel = sample['fs2_mels'] | |
outputs = self.model( | |
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=f0, uv=uv, ref_mels=[None, fs2_mel], energy=energy, | |
infer=True) | |
sample['outputs'] = self.model.out2mel(outputs['mel_out']) | |
sample['mel2ph_pred'] = outputs['mel2ph'] | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
sample['f0'] = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel | |
sample['f0_pred'] = self.pe(sample['outputs'])['f0_denorm_pred'] # pe predict from Pred mel | |
else: | |
sample['f0'] = denorm_f0(sample['f0'], sample['uv'], hparams) | |
sample['f0_pred'] = outputs.get('f0_denorm') | |
return self.after_infer(sample) | |
class MIDIDataset(FastSpeechDataset): | |
def __getitem__(self, index): | |
sample = super(MIDIDataset, self).__getitem__(index) | |
item = self._get_item(index) | |
sample['f0_midi'] = torch.FloatTensor(item['f0_midi']) | |
sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] | |
return sample | |
def collater(self, samples): | |
batch = super(MIDIDataset, self).collater(samples) | |
batch['f0_midi'] = utils.collate_1d([s['f0_midi'] for s in samples], 0.0) | |
batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) | |
# print((batch['pitch_midi'] == f0_to_coarse(batch['f0_midi'])).all()) | |
return batch | |
class OpencpopDataset(FastSpeechDataset): | |
def __getitem__(self, index): | |
sample = super(OpencpopDataset, self).__getitem__(index) | |
item = self._get_item(index) | |
sample['pitch_midi'] = torch.LongTensor(item['pitch_midi'])[:hparams['max_frames']] | |
sample['midi_dur'] = torch.FloatTensor(item['midi_dur'])[:hparams['max_frames']] | |
sample['is_slur'] = torch.LongTensor(item['is_slur'])[:hparams['max_frames']] | |
sample['word_boundary'] = torch.LongTensor(item['word_boundary'])[:hparams['max_frames']] | |
return sample | |
def collater(self, samples): | |
batch = super(OpencpopDataset, self).collater(samples) | |
batch['pitch_midi'] = utils.collate_1d([s['pitch_midi'] for s in samples], 0) | |
batch['midi_dur'] = utils.collate_1d([s['midi_dur'] for s in samples], 0) | |
batch['is_slur'] = utils.collate_1d([s['is_slur'] for s in samples], 0) | |
batch['word_boundary'] = utils.collate_1d([s['word_boundary'] for s in samples], 0) | |
return batch | |
class DiffSingerMIDITask(DiffSingerTask): | |
def __init__(self): | |
super(DiffSingerMIDITask, self).__init__() | |
# self.dataset_cls = MIDIDataset | |
self.dataset_cls = OpencpopDataset | |
def run_model(self, model, sample, return_output=False, infer=False): | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
# mel2ph = sample['mel2ph'] if hparams['use_gt_dur'] else None # [B, T_s] | |
mel2ph = sample['mel2ph'] | |
if hparams.get('switch_midi2f0_step') is not None and self.global_step > hparams['switch_midi2f0_step']: | |
f0 = None | |
uv = None | |
else: | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
energy = sample['energy'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
if hparams['pitch_type'] == 'cwt': | |
cwt_spec = sample[f'cwt_spec'] | |
f0_mean = sample['f0_mean'] | |
f0_std = sample['f0_std'] | |
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) | |
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, | |
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=infer, pitch_midi=sample['pitch_midi'], | |
midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) | |
losses = {} | |
if 'diff_loss' in output: | |
losses['mel'] = output['diff_loss'] | |
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) | |
if hparams['use_pitch_embed']: | |
self.add_pitch_loss(output, sample, losses) | |
if hparams['use_energy_embed']: | |
self.add_energy_loss(output['energy_pred'], energy, losses) | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
energy = sample['energy'] | |
# fs2_mel = sample['fs2_mels'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
mel2ph = sample['mel2ph'] | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True, infer=False) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
outputs = utils.tensors_to_scalars(outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
model_out = self.model( | |
txt_tokens, spk_embed=spk_embed, mel2ph=mel2ph, f0=None, uv=None, energy=energy, ref_mels=None, infer=True, | |
pitch_midi=sample['pitch_midi'], midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) | |
if hparams.get('pe_enable') is not None and hparams['pe_enable']: | |
gt_f0 = self.pe(sample['mels'])['f0_denorm_pred'] # pe predict from GT mel | |
pred_f0 = self.pe(model_out['mel_out'])['f0_denorm_pred'] # pe predict from Pred mel | |
else: | |
gt_f0 = denorm_f0(sample['f0'], sample['uv'], hparams) | |
pred_f0 = model_out.get('f0_denorm') | |
self.plot_wav(batch_idx, sample['mels'], model_out['mel_out'], is_mel=True, gt_f0=gt_f0, f0=pred_f0) | |
self.plot_mel(batch_idx, sample['mels'], model_out['mel_out'], name=f'diffmel_{batch_idx}') | |
self.plot_mel(batch_idx, sample['mels'], model_out['fs2_mel'], name=f'fs2mel_{batch_idx}') | |
if hparams['use_pitch_embed']: | |
self.plot_pitch(batch_idx, sample, model_out) | |
return outputs | |
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): | |
""" | |
:param dur_pred: [B, T], float, log scale | |
:param mel2ph: [B, T] | |
:param txt_tokens: [B, T] | |
:param losses: | |
:return: | |
""" | |
B, T = txt_tokens.shape | |
nonpadding = (txt_tokens != 0).float() | |
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding | |
is_sil = torch.zeros_like(txt_tokens).bool() | |
for p in self.sil_ph: | |
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) | |
is_sil = is_sil.float() # [B, T_txt] | |
# phone duration loss | |
if hparams['dur_loss'] == 'mse': | |
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') | |
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() | |
dur_pred = (dur_pred.exp() - 1).clamp(min=0) | |
else: | |
raise NotImplementedError | |
# use linear scale for sent and word duration | |
if hparams['lambda_word_dur'] > 0: | |
idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] | |
# word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_(1, idx, midi_dur) # midi_dur can be implied by add gt-ph_dur | |
word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) | |
word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) | |
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') | |
word_nonpadding = (word_dur_g > 0).float() | |
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() | |
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] | |
if hparams['lambda_sent_dur'] > 0: | |
sent_dur_p = dur_pred.sum(-1) | |
sent_dur_g = dur_gt.sum(-1) | |
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') | |
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] | |
class AuxDecoderMIDITask(FastSpeech2Task): | |
def __init__(self): | |
super().__init__() | |
# self.dataset_cls = MIDIDataset | |
self.dataset_cls = OpencpopDataset | |
def build_tts_model(self): | |
if hparams.get('use_midi') is not None and hparams['use_midi']: | |
self.model = FastSpeech2MIDI(self.phone_encoder) | |
else: | |
self.model = FastSpeech2(self.phone_encoder) | |
def run_model(self, model, sample, return_output=False): | |
txt_tokens = sample['txt_tokens'] # [B, T_t] | |
target = sample['mels'] # [B, T_s, 80] | |
mel2ph = sample['mel2ph'] # [B, T_s] | |
f0 = sample['f0'] | |
uv = sample['uv'] | |
energy = sample['energy'] | |
spk_embed = sample.get('spk_embed') if not hparams['use_spk_id'] else sample.get('spk_ids') | |
if hparams['pitch_type'] == 'cwt': | |
cwt_spec = sample[f'cwt_spec'] | |
f0_mean = sample['f0_mean'] | |
f0_std = sample['f0_std'] | |
sample['f0_cwt'] = f0 = model.cwt2f0_norm(cwt_spec, f0_mean, f0_std, mel2ph) | |
output = model(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, | |
ref_mels=target, f0=f0, uv=uv, energy=energy, infer=False, pitch_midi=sample['pitch_midi'], | |
midi_dur=sample.get('midi_dur'), is_slur=sample.get('is_slur')) | |
losses = {} | |
self.add_mel_loss(output['mel_out'], target, losses) | |
self.add_dur_loss(output['dur'], mel2ph, txt_tokens, sample['word_boundary'], losses=losses) | |
if hparams['use_pitch_embed']: | |
self.add_pitch_loss(output, sample, losses) | |
if hparams['use_energy_embed']: | |
self.add_energy_loss(output['energy_pred'], energy, losses) | |
if not return_output: | |
return losses | |
else: | |
return losses, output | |
def add_dur_loss(self, dur_pred, mel2ph, txt_tokens, wdb, losses=None): | |
""" | |
:param dur_pred: [B, T], float, log scale | |
:param mel2ph: [B, T] | |
:param txt_tokens: [B, T] | |
:param losses: | |
:return: | |
""" | |
B, T = txt_tokens.shape | |
nonpadding = (txt_tokens != 0).float() | |
dur_gt = mel2ph_to_dur(mel2ph, T).float() * nonpadding | |
is_sil = torch.zeros_like(txt_tokens).bool() | |
for p in self.sil_ph: | |
is_sil = is_sil | (txt_tokens == self.phone_encoder.encode(p)[0]) | |
is_sil = is_sil.float() # [B, T_txt] | |
# phone duration loss | |
if hparams['dur_loss'] == 'mse': | |
losses['pdur'] = F.mse_loss(dur_pred, (dur_gt + 1).log(), reduction='none') | |
losses['pdur'] = (losses['pdur'] * nonpadding).sum() / nonpadding.sum() | |
dur_pred = (dur_pred.exp() - 1).clamp(min=0) | |
else: | |
raise NotImplementedError | |
# use linear scale for sent and word duration | |
if hparams['lambda_word_dur'] > 0: | |
idx = F.pad(wdb.cumsum(axis=1), (1, 0))[:, :-1] | |
# word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_(1, idx, midi_dur) # midi_dur can be implied by add gt-ph_dur | |
word_dur_p = dur_pred.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_pred) | |
word_dur_g = dur_gt.new_zeros([B, idx.max() + 1]).scatter_add(1, idx, dur_gt) | |
wdur_loss = F.mse_loss((word_dur_p + 1).log(), (word_dur_g + 1).log(), reduction='none') | |
word_nonpadding = (word_dur_g > 0).float() | |
wdur_loss = (wdur_loss * word_nonpadding).sum() / word_nonpadding.sum() | |
losses['wdur'] = wdur_loss * hparams['lambda_word_dur'] | |
if hparams['lambda_sent_dur'] > 0: | |
sent_dur_p = dur_pred.sum(-1) | |
sent_dur_g = dur_gt.sum(-1) | |
sdur_loss = F.mse_loss((sent_dur_p + 1).log(), (sent_dur_g + 1).log(), reduction='mean') | |
losses['sdur'] = sdur_loss.mean() * hparams['lambda_sent_dur'] | |
def validation_step(self, sample, batch_idx): | |
outputs = {} | |
outputs['losses'] = {} | |
outputs['losses'], model_out = self.run_model(self.model, sample, return_output=True) | |
outputs['total_loss'] = sum(outputs['losses'].values()) | |
outputs['nsamples'] = sample['nsamples'] | |
mel_out = self.model.out2mel(model_out['mel_out']) | |
outputs = utils.tensors_to_scalars(outputs) | |
# if sample['mels'].shape[0] == 1: | |
# self.add_laplace_var(mel_out, sample['mels'], outputs) | |
if batch_idx < hparams['num_valid_plots']: | |
self.plot_mel(batch_idx, sample['mels'], mel_out) | |
self.plot_dur(batch_idx, sample, model_out) | |
if hparams['use_pitch_embed']: | |
self.plot_pitch(batch_idx, sample, model_out) | |
return outputs |