Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
""" | |
Differentiable quantizer based on scaled noise injection. | |
""" | |
from dataclasses import dataclass | |
import math | |
import typing as tp | |
import torch | |
from .base import BaseQuantizer | |
from .uniform import uniform_quantize, uniform_unquantize | |
from .utils import simple_repr | |
class DiffQuantizer(BaseQuantizer): | |
class _QuantizedParam(BaseQuantizer._QuantizedParam): | |
logit: torch.nn.Parameter | |
def __init__(self, model: torch.nn.Module, min_size: float = 0.01, float16: bool = False, | |
group_size: int = 1, min_bits: float = 2, max_bits: float = 15, | |
param="bits", noise="gaussian", | |
init_bits: float = 8, extra_bits: float = 0, suffix: str = "_diffq", | |
exclude: tp.List[str] = [], detect_bound: bool = True): | |
""" | |
Differentiable quantizer based on scaled noise injection. | |
For every parameter `p` in the model, this introduces a number of bits parameter | |
`b` with the same dimensions (when group_size = 1). | |
Before each forward, `p` is replaced by `p + U` | |
with U uniform iid noise with range [-d/2, d/2], with `d` the uniform quantization | |
step for `b` bits. | |
This noise approximates the quantization noise in a differentiable manner, both | |
with respect to the unquantized parameter `p` and the number of bits `b`. | |
At eveluation (as detected with `model.eval()`), the model is replaced | |
by its true quantized version, and restored when going back to training. | |
When doing actual quantization (for serialization, or evaluation), | |
the number of bits is rounded to the nearest integer, and needs to be stored along. | |
This will cost a few bits per dimension. To reduce this cost, one can use `group_size`, | |
which will use a single noise level for multiple weight entries. | |
You can use the `DiffQuantizer.model_size` method to get a differentiable estimate of the | |
model size in MB. You can then use this estimate as a penalty in your training loss. | |
Args: | |
model (torch.nn.Module): model to quantize | |
min_size (float): minimum size in MB of a parameter to be quantized. | |
float16 (bool): if a layer is smaller than min_size, should we still do float16? | |
group_size (int): weight entries are groupped together to reduce the number | |
of noise scales to store. This should divide the size of all parameters | |
bigger than min_size. | |
min_bits (float): minimal number of bits. | |
max_bits (float): maximal number of bits. | |
init_bits (float): initial number of bits. | |
extra_bits (float): extra bits to add for actual quantization (before roundoff). | |
suffix (str): suffix used for the name of the extra noise scale parameters. | |
exclude (list[str]): list of patterns used to match parameters to exclude. | |
For instance `['bias']` to exclude all bias terms. | |
detect_bound (bool): if True, will detect bound parameters and reuse | |
the same quantized tensor for both, as well as the same number of bits. | |
..Warning:: | |
You must call `model.training()` and `model.eval()` for `DiffQuantizer` work properly. | |
""" | |
self.group_size = group_size | |
self.min_bits = min_bits | |
self.max_bits = max_bits | |
self.init_bits = init_bits | |
self.extra_bits = extra_bits | |
self.suffix = suffix | |
self.param = param | |
self.noise = noise | |
assert noise in ["gaussian", "uniform"] | |
self._optimizer_setup = False | |
self._min_noise = 1 / (2 ** self.max_bits - 1) | |
self._max_noise = 1 / (2 ** self.min_bits - 1) | |
assert group_size >= 0 | |
assert min_bits < init_bits < max_bits, \ | |
"init_bits must be between min_bits and max_bits excluded3" | |
for name, _ in model.named_parameters(): | |
if name.endswith(suffix): | |
raise RuntimeError("The model already has some noise scales parameters, " | |
"maybe you used twice a DiffQuantizer on the same model?.") | |
super().__init__(model, min_size, float16, exclude, detect_bound) | |
def _get_bits(self, logit: torch.Tensor): | |
if self.param == "noise": | |
return torch.log2(1 + 1 / self._get_noise_scale(logit)) | |
else: | |
t = torch.sigmoid(logit) | |
return self.max_bits * t + (1 - t) * self.min_bits | |
def _get_noise_scale(self, logit: torch.Tensor): | |
if self.param == "noise": | |
t = torch.sigmoid(logit) | |
return torch.exp(t * math.log(self._min_noise) + (1 - t) * math.log(self._max_noise)) | |
else: | |
return 1 / (2 ** self._get_bits(logit) - 1) | |
def _register_param(self, name, param, module, other): | |
if other is not None: | |
return self.__class__._QuantizedParam( | |
name=name, param=param, module=module, logit=other.logit, other=other) | |
assert self.group_size == 0 or param.numel() % self.group_size == 0 | |
# we want the initial number of bits to be init_bits. | |
if self.param == "noise": | |
noise_scale = 1 / (2 ** self.init_bits - 1) | |
t = (math.log(noise_scale) - math.log(self._max_noise)) / ( | |
math.log(self._min_noise) - math.log(self._max_noise)) | |
else: | |
t = (self.init_bits - self.min_bits) / (self.max_bits - self.min_bits) | |
assert 0 < t < 1 | |
logit = torch.logit(torch.tensor(float(t))) | |
assert abs(self._get_bits(logit) - self.init_bits) < 1e-5 | |
if self.group_size > 0: | |
nparam = param.numel() // self.group_size | |
else: | |
nparam = 1 | |
logit = torch.nn.Parameter( | |
torch.full( | |
(nparam,), | |
logit, | |
device=param.device)) | |
module.register_parameter(name + self.suffix, logit) | |
return self.__class__._QuantizedParam( | |
name=name, param=param, module=module, logit=logit, other=None) | |
def clear_optimizer(self, optimizer: torch.optim.Optimizer): | |
params = [qp.logit for qp in self._qparams] | |
for group in optimizer.param_groups: | |
new_params = [] | |
for q in list(group["params"]): | |
matched = False | |
for p in params: | |
if p is q: | |
matched = True | |
if not matched: | |
new_params.append(q) | |
group["params"][:] = new_params | |
def setup_optimizer(self, optimizer: torch.optim.Optimizer, | |
lr: float = 1e-3, **kwargs): | |
""" | |
Setup the optimizer to tune the number of bits. In particular, this will deactivate | |
weight decay for the bits parameters. | |
Args: | |
optimizer (torch.Optimizer): optimizer to use. | |
lr (float): specific learning rate for the bits parameters. 1e-3 | |
is perfect for Adam.,w | |
kwargs (dict): overrides for other optimization parameters for the bits. | |
""" | |
assert not self._optimizer_setup | |
self._optimizer_setup = True | |
params = [qp.logit for qp in self._qparams] | |
for group in optimizer.param_groups: | |
for q in list(group["params"]): | |
for p in params: | |
if p is q: | |
raise RuntimeError("You should create the optimizer " | |
"before the quantizer!") | |
group = {"params": params, "lr": lr, "weight_decay": 0} | |
group.update(kwargs) | |
optimizer.add_param_group(group) | |
def no_optimizer(self): | |
""" | |
Call this if you do not want to use an optimizer. | |
""" | |
self._optimizer_setup = True | |
def check_unused(self): | |
for qparam in self._qparams: | |
if qparam.other is not None: | |
continue | |
grad = qparam.param.grad | |
if grad is None or (grad == 0).all(): | |
if qparam.logit.grad is not None: | |
qparam.logit.grad.data.zero_() | |
def model_size(self, exact=False): | |
""" | |
Differentiable estimate of the model size. | |
The size is returned in MB. | |
If `exact` is True, then the output is no longer differentiable but | |
reflect exactly an achievable size, even without compression, | |
i.e.same as returned by `naive_model_size()`. | |
""" | |
total = super().model_size() | |
subtotal = 0 | |
for qparam in self._qparams: | |
# only count the first appearance of a Parameter | |
if qparam.other is not None: | |
continue | |
bits = self.extra_bits + self._get_bits(qparam.logit) | |
if exact: | |
bits = bits.round().clamp(1, 15) | |
if self.group_size == 0: | |
group_size = qparam.param.numel() | |
else: | |
group_size = self.group_size | |
subtotal += group_size * bits.sum() | |
subtotal += 2 * 32 # param scale | |
# Number of bits to represent each number of bits | |
bits_bits = math.ceil(math.log2(1 + (bits.max().round().item() - self.min_bits))) | |
subtotal += 8 # 8 bits for bits_bits | |
subtotal += bits_bits * bits.numel() | |
subtotal /= 2 ** 20 * 8 # bits -> MegaBytes | |
return total + subtotal | |
def true_model_size(self): | |
""" | |
Naive model size without zlib compression. | |
""" | |
return self.model_size(exact=True).item() | |
def _pre_forward_train(self): | |
if not self._optimizer_setup: | |
raise RuntimeError("You must call `setup_optimizer()` on your optimizer " | |
"before starting training.") | |
for qparam in self._qparams: | |
if qparam.other is not None: | |
noisy = qparam.other.module._parameters[qparam.other.name] | |
else: | |
bits = self._get_bits(qparam.logit)[:, None] | |
if self.group_size == 0: | |
p_flat = qparam.param.view(-1) | |
else: | |
p_flat = qparam.param.view(-1, self.group_size) | |
scale = p_flat.max() - p_flat.min() | |
unit = 1 / (2**bits - 1) | |
if self.noise == "uniform": | |
noise_source = (torch.rand_like(p_flat) - 0.5) | |
elif self.noise == "gaussian": | |
noise_source = torch.randn_like(p_flat) / 2 | |
noise = scale * unit * noise_source | |
noisy = p_flat + noise | |
# We bypass the checks by PyTorch on parameters being leafs | |
qparam.module._parameters[qparam.name] = noisy.view_as(qparam.param) | |
return True | |
def _post_forward_train(self): | |
for qparam in self._qparams: | |
qparam.module._parameters[qparam.name] = qparam.param | |
return True | |
def _quantize_param(self, qparam: _QuantizedParam) -> tp.Any: | |
bits = self.extra_bits + self._get_bits(qparam.logit) | |
bits = bits.round().clamp(1, 15)[:, None].byte() | |
if self.group_size == 0: | |
p = qparam.param.data.view(-1) | |
else: | |
p = qparam.param.data.view(-1, self.group_size) | |
levels, scales = uniform_quantize(p, bits) | |
return levels, scales, bits | |
def _unquantize_param(self, qparam: _QuantizedParam, quantized: tp.Any) -> torch.Tensor: | |
levels, param_scale, bits = quantized | |
return uniform_unquantize(levels, param_scale, bits).view_as(qparam.param.data) | |
def detach(self): | |
super().detach() | |
for qparam in self._qparams: | |
delattr(qparam.module, qparam.name + self.suffix) | |
def __repr__(self): | |
return simple_repr(self) | |