Spaces:
r3gm
/
Running

File size: 10,048 Bytes
7bc29af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import sys
import traceback

import parselmouth

now_dir = os.getcwd()
sys.path.append(now_dir)
import logging
from LazyImport import lazyload

import numpy as np
import pyworld
torchcrepe = lazyload("torchcrepe")  # Fork Feature. Crepe algo for training and preprocess
torch = lazyload("torch")
#from torch import Tensor  # Fork Feature. Used for pitch prediction for torch crepe.
tqdm = lazyload("tqdm")
from infer.lib.audio import load_audio

logging.getLogger("numba").setLevel(logging.WARNING)
from multiprocessing import Process

exp_dir = sys.argv[1]
f = open("%s/extract_f0_feature.log" % exp_dir, "a+")

DoFormant = False
Quefrency = 1.0
Timbre = 1.0

def printt(strr):
    print(strr)
    f.write(f"{strr}\n")
    f.flush()


n_p = int(sys.argv[2])
f0method = sys.argv[3]
extraction_crepe_hop_length = 0
try:
    extraction_crepe_hop_length = int(sys.argv[4])
except:
    print("Temp Issue. echl is not being passed with argument!")
    extraction_crepe_hop_length = 128

class FeatureInput(object):
    def __init__(self, samplerate=16000, hop_size=160):
        self.fs = samplerate
        self.hop = hop_size

        self.f0_bin = 256
        self.f0_max = 1100.0
        self.f0_min = 50.0
        self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
        self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)

    def mncrepe(self, method, x, p_len, crepe_hop_length):
        f0 = None
        torch_device_index = 0
        torch_device = torch.device(
            f"cuda:{torch_device_index % torch.cuda.device_count()}"
        ) if torch.cuda.is_available() \
            else torch.device("mps") if torch.backends.mps.is_available() \
            else torch.device("cpu")

        audio = torch.from_numpy(x.astype(np.float32)).to(torch_device, copy=True)
        audio /= torch.quantile(torch.abs(audio), 0.999)
        audio = torch.unsqueeze(audio, dim=0)
        if audio.ndim == 2 and audio.shape[0] > 1:
            audio = torch.mean(audio, dim=0, keepdim=True).detach()
        audio = audio.detach()
        
        if method == 'mangio-crepe':
            pitch: torch.Tensor = torchcrepe.predict(
                audio,
                self.fs,
                crepe_hop_length,
                self.f0_min,
                self.f0_max,
                "full",
                batch_size=crepe_hop_length * 2,
                device=torch_device,
                pad=True,
            )
            p_len = p_len or x.shape[0] // crepe_hop_length
            # Resize the pitch
            source = np.array(pitch.squeeze(0).cpu().float().numpy())
            source[source < 0.001] = np.nan
            target = np.interp(
                np.arange(0, len(source) * p_len, len(source)) / p_len,
                np.arange(0, len(source)),
                source,
            )
            f0 = np.nan_to_num(target)
            
        elif method == 'crepe':
            batch_size = 512
            audio = torch.tensor(np.copy(x))[None].float()
            f0, pd = torchcrepe.predict(
                audio,
                self.fs,
                160,
                self.f0_min,
                self.f0_max,
                "full",
                batch_size=batch_size,
                device=torch_device,
                return_periodicity=True,
            )
            pd = torchcrepe.filter.median(pd, 3)
            f0 = torchcrepe.filter.mean(f0, 3)
            f0[pd < 0.1] = 0
            f0 = f0[0].cpu().numpy()
            f0 = f0[1:]  # Get rid of extra first frame

        return f0

    def get_pm(self, x, p_len):
        f0 = parselmouth.Sound(x, self.fs).to_pitch_ac(
            time_step=160 / 16000,
            voicing_threshold=0.6,
            pitch_floor=self.f0_min,
            pitch_ceiling=self.f0_max,
        ).selected_array["frequency"]
        
        return np.pad(
            f0,
            [[max(0, (p_len - len(f0) + 1) // 2), max(0, p_len - len(f0) - (p_len - len(f0) + 1) // 2)]],
            mode="constant"
        )

    def get_harvest(self, x):
        f0_spectral = pyworld.harvest(
            x.astype(np.double),
            fs=self.fs,
            f0_ceil=self.f0_max,
            f0_floor=self.f0_min,
            frame_period=1000 * self.hop / self.fs,
        )
        return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)

    def get_dio(self, x):
        f0_spectral = pyworld.dio(
            x.astype(np.double),
            fs=self.fs,
            f0_ceil=self.f0_max,
            f0_floor=self.f0_min,
            frame_period=1000 * self.hop / self.fs,
        )
        return pyworld.stonemask(x.astype(np.double), *f0_spectral, self.fs)

    def get_rmvpe(self, x):
        if hasattr(self, "model_rmvpe") == False:
                from infer.lib.rmvpe import RMVPE

                print("Loading rmvpe model")
                self.model_rmvpe = RMVPE(
                    "assets/rmvpe/rmvpe.pt", is_half=False, device="cpu"
                )
        return self.model_rmvpe.infer_from_audio(x, thred=0.03)
        
    def get_rmvpe_dml(self, x):
        ...

    def get_f0_method_dict(self):
        return {
            "pm": self.get_pm,
            "harvest": self.get_harvest,
            "dio": self.get_dio,
            "rmvpe": self.get_rmvpe
        }

    def get_f0_hybrid_computation(
        self,
        methods_str,
        x,
        p_len,
        crepe_hop_length,
    ):
        # Get various f0 methods from input to use in the computation stack
        s = methods_str
        s = s.split("hybrid")[1]
        s = s.replace("[", "").replace("]", "")
        methods = s.split("+")
        f0_computation_stack = []

        for method in methods:
            if method in self.f0_method_dict:
                f0 = self.f0_method_dict[method](x, p_len) if method == 'pm' else self.f0_method_dict[method](x)
                f0_computation_stack.append(f0)
            elif method == 'crepe' or method == 'mangio-crepe':
                self.the_other_complex_function(x, method, crepe_hop_length)

        if len(f0_computation_stack) != 0:        
            f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) if len(f0_computation_stack)>1 else f0_computation_stack[0]
            return f0_median_hybrid
        else:
            raise ValueError("No valid methods were provided")

    def compute_f0(self, path, f0_method, crepe_hop_length):
        x = load_audio(path, self.fs, DoFormant, Quefrency, Timbre)
        p_len = x.shape[0] // self.hop

        if f0_method in self.f0_method_dict:
            f0 = self.f0_method_dict[f0_method](x, p_len) if f0_method == 'pm' else self.f0_method_dict[f0_method](x)
        elif f0_method in ['crepe', 'mangio-crepe']:
            f0 = self.mncrepe(f0_method, x, p_len, crepe_hop_length)
        elif "hybrid" in f0_method:  # EXPERIMENTAL
            # Perform hybrid median pitch estimation
            f0 = self.get_f0_hybrid_computation(
                f0_method,
                x,
                p_len,
                crepe_hop_length,
            )
        return f0

    def coarse_f0(self, f0):
        f0_mel = 1127 * np.log(1 + f0 / 700)
        f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * (
            self.f0_bin - 2
        ) / (self.f0_mel_max - self.f0_mel_min) + 1

        # use 0 or 1
        f0_mel[f0_mel <= 1] = 1
        f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1
        f0_coarse = np.rint(f0_mel).astype(int)
        assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (
            f0_coarse.max(),
            f0_coarse.min(),
        )
        return f0_coarse

    def go(self, paths, f0_method, crepe_hop_length, thread_n):
        if len(paths) == 0:
            printt("no-f0-todo")
            return
        with tqdm.tqdm(total=len(paths), leave=True, position=thread_n) as pbar:
            description = f"thread:{thread_n}, f0ing, Hop-Length:{crepe_hop_length}"
            pbar.set_description(description)
                
            for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths):
                try:
                    if (
                        os.path.exists(opt_path1 + ".npy") 
                        and os.path.exists(opt_path2 + ".npy")
                    ):
                        pbar.update(1)
                        continue

                    featur_pit = self.compute_f0(inp_path, f0_method, crepe_hop_length)
                    np.save(
                        opt_path2,
                        featur_pit,
                        allow_pickle=False,
                    )  # nsf
                    coarse_pit = self.coarse_f0(featur_pit)
                    np.save(
                        opt_path1,
                        coarse_pit,
                        allow_pickle=False,
                    )  # ori
                    pbar.update(1)
                except Exception as e:
                    printt(f"f0fail-{idx}-{inp_path}-{traceback.format_exc()}")


if __name__ == "__main__":
    # exp_dir=r"E:\codes\py39\dataset\mi-test"
    # n_p=16
    # f = open("%s/log_extract_f0.log"%exp_dir, "w")
    printt(sys.argv)
    featureInput = FeatureInput()
    paths = []
    inp_root = "%s/1_16k_wavs" % (exp_dir)
    opt_root1 = "%s/2a_f0" % (exp_dir)
    opt_root2 = "%s/2b-f0nsf" % (exp_dir)

    os.makedirs(opt_root1, exist_ok=True)
    os.makedirs(opt_root2, exist_ok=True)
    for name in sorted(list(os.listdir(inp_root))):
        inp_path = "%s/%s" % (inp_root, name)
        if "spec" in inp_path:
            continue
        opt_path1 = "%s/%s" % (opt_root1, name)
        opt_path2 = "%s/%s" % (opt_root2, name)
        paths.append([inp_path, opt_path1, opt_path2])

    ps = []
    print("Using f0 method: " + f0method)
    for i in range(n_p):
        p = Process(
            target=featureInput.go,
            args=(paths[i::n_p], f0method, extraction_crepe_hop_length, i),
        )
        ps.append(p)
        p.start()
    for i in range(n_p):
        ps[i].join()