Spaces:
Running
on
A100
Running
on
A100
File size: 9,793 Bytes
d056e0b dabf711 d056e0b dabf711 e31d3e1 dabf711 d056e0b a96a8c6 d056e0b a96a8c6 37ccbbb a96a8c6 d056e0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import asyncio
import json
import logging
import traceback
from pydantic import BaseModel
from fastapi import FastAPI, WebSocket, HTTPException, WebSocketDisconnect
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from diffusers import AutoencoderTiny, ControlNetModel
from latent_consistency_controlnet import LatentConsistencyModelPipeline_controlnet
from compel import Compel
import torch
from canny_gpu import SobelOperator
# from controlnet_aux import OpenposeDetector
# import cv2
try:
import intel_extension_for_pytorch as ipex
except:
pass
from PIL import Image
import numpy as np
import gradio as gr
import io
import uuid
import os
import time
import psutil
MAX_QUEUE_SIZE = int(os.environ.get("MAX_QUEUE_SIZE", 0))
TIMEOUT = float(os.environ.get("TIMEOUT", 0))
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
TORCH_COMPILE = os.environ.get("TORCH_COMPILE", None)
WIDTH = 512
HEIGHT = 512
# disable tiny autoencoder for better quality speed tradeoff
USE_TINY_AUTOENCODER = True
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
"cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
# change to torch.float16 to save GPU memory
torch_dtype = torch.float16
print(f"TIMEOUT: {TIMEOUT}")
print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"MAX_QUEUE_SIZE: {MAX_QUEUE_SIZE}")
print(f"device: {device}")
if mps_available:
device = torch.device("mps")
device = "cpu"
torch_dtype = torch.float32
controlnet_canny = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_canny", torch_dtype=torch_dtype
).to(device)
canny_torch = SobelOperator(device=device)
# controlnet_pose = ControlNetModel.from_pretrained(
# "lllyasviel/control_v11p_sd15_openpose", torch_dtype=torch_dtype
# ).to(device)
# controlnet_depth = ControlNetModel.from_pretrained(
# "lllyasviel/control_v11f1p_sd15_depth", torch_dtype=torch_dtype
# ).to(device)
# pose_processor = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
if SAFETY_CHECKER == "True":
pipe = LatentConsistencyModelPipeline_controlnet.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
controlnet=controlnet_canny,
scheduler=None,
)
else:
pipe = LatentConsistencyModelPipeline_controlnet.from_pretrained(
"SimianLuo/LCM_Dreamshaper_v7",
safety_checker=None,
controlnet=controlnet_canny,
scheduler=None,
)
if USE_TINY_AUTOENCODER:
pipe.vae = AutoencoderTiny.from_pretrained(
"madebyollin/taesd", torch_dtype=torch_dtype, use_safetensors=True
)
pipe.set_progress_bar_config(disable=True)
pipe.to(device=device, dtype=torch_dtype).to(device)
pipe.unet.to(memory_format=torch.channels_last)
if psutil.virtual_memory().total < 64 * 1024**3:
pipe.enable_attention_slicing()
compel_proc = Compel(
tokenizer=pipe.tokenizer,
text_encoder=pipe.text_encoder,
truncate_long_prompts=False,
)
if TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
pipe(prompt="warmup", image=[Image.new("RGB", (768, 768))], control_image=[Image.new("RGB", (768, 768))])
user_queue_map = {}
class InputParams(BaseModel):
seed: int = 2159232
prompt: str
guidance_scale: float = 8.0
strength: float = 0.5
steps: int = 4
lcm_steps: int = 50
width: int = WIDTH
height: int = HEIGHT
controlnet_scale: float = 0.8
controlnet_start: float = 0.0
controlnet_end: float = 1.0
canny_low_threshold: float = 0.31
canny_high_threshold: float = 0.78
debug_canny: bool = False
def predict(
input_image: Image.Image, params: InputParams, prompt_embeds: torch.Tensor = None
):
generator = torch.manual_seed(params.seed)
control_image = canny_torch(input_image, params.canny_low_threshold, params.canny_high_threshold)
results = pipe(
control_image=control_image,
prompt_embeds=prompt_embeds,
generator=generator,
image=input_image,
strength=params.strength,
num_inference_steps=params.steps,
guidance_scale=params.guidance_scale,
width=params.width,
height=params.height,
lcm_origin_steps=params.lcm_steps,
output_type="pil",
controlnet_conditioning_scale=params.controlnet_scale,
control_guidance_start=params.controlnet_start,
control_guidance_end=params.controlnet_end,
)
nsfw_content_detected = (
results.nsfw_content_detected[0]
if "nsfw_content_detected" in results
else False
)
if nsfw_content_detected:
return None
result_image = results.images[0]
if params.debug_canny:
# paste control_image on top of result_image
w0, h0 = (200, 200)
control_image = control_image.resize((w0, h0))
w1, h1 = result_image.size
result_image.paste(control_image, (w1 - w0, h1 - h0))
return result_image
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
if MAX_QUEUE_SIZE > 0 and len(user_queue_map) >= MAX_QUEUE_SIZE:
print("Server is full")
await websocket.send_json({"status": "error", "message": "Server is full"})
await websocket.close()
return
try:
uid = str(uuid.uuid4())
print(f"New user connected: {uid}")
await websocket.send_json(
{"status": "success", "message": "Connected", "userId": uid}
)
user_queue_map[uid] = {"queue": asyncio.Queue()}
await websocket.send_json(
{"status": "start", "message": "Start Streaming", "userId": uid}
)
await handle_websocket_data(websocket, uid)
except WebSocketDisconnect as e:
logging.error(f"WebSocket Error: {e}, {uid}")
traceback.print_exc()
finally:
print(f"User disconnected: {uid}")
queue_value = user_queue_map.pop(uid, None)
queue = queue_value.get("queue", None)
if queue:
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
@app.get("/queue_size")
async def get_queue_size():
queue_size = len(user_queue_map)
return JSONResponse({"queue_size": queue_size})
@app.get("/stream/{user_id}")
async def stream(user_id: uuid.UUID):
uid = str(user_id)
try:
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
async def generate():
last_prompt: str = None
prompt_embeds: torch.Tensor = None
while True:
data = await queue.get()
input_image = data["image"]
params = data["params"]
if input_image is None:
continue
# avoid recalculate prompt embeds
if last_prompt != params.prompt:
print("new prompt")
prompt_embeds = compel_proc(params.prompt)
last_prompt = params.prompt
image = predict(
input_image,
params,
prompt_embeds,
)
if image is None:
continue
frame_data = io.BytesIO()
image.save(frame_data, format="JPEG")
frame_data = frame_data.getvalue()
if frame_data is not None and len(frame_data) > 0:
yield b"--frame\r\nContent-Type: image/jpeg\r\n\r\n" + frame_data + b"\r\n"
await asyncio.sleep(1.0 / 120.0)
return StreamingResponse(
generate(), media_type="multipart/x-mixed-replace;boundary=frame"
)
except Exception as e:
logging.error(f"Streaming Error: {e}, {user_queue_map}")
traceback.print_exc()
return HTTPException(status_code=404, detail="User not found")
async def handle_websocket_data(websocket: WebSocket, user_id: uuid.UUID):
uid = str(user_id)
user_queue = user_queue_map[uid]
queue = user_queue["queue"]
if not queue:
return HTTPException(status_code=404, detail="User not found")
last_time = time.time()
try:
while True:
data = await websocket.receive_bytes()
params = await websocket.receive_json()
params = InputParams(**params)
pil_image = Image.open(io.BytesIO(data))
while not queue.empty():
try:
queue.get_nowait()
except asyncio.QueueEmpty:
continue
await queue.put({"image": pil_image, "params": params})
if TIMEOUT > 0 and time.time() - last_time > TIMEOUT:
await websocket.send_json(
{
"status": "timeout",
"message": "Your session has ended",
"userId": uid,
}
)
await websocket.close()
return
except Exception as e:
logging.error(f"Error: {e}")
traceback.print_exc()
app.mount("/", StaticFiles(directory="controlnet", html=True), name="public")
|