File size: 13,057 Bytes
549f7f3
 
 
 
 
d80bf49
549f7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6bfde
549f7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6bfde
 
 
 
 
549f7f3
 
 
cf6bfde
 
549f7f3
cf6bfde
549f7f3
cf6bfde
 
 
549f7f3
 
cf6bfde
 
 
 
 
 
 
 
549f7f3
cf6bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d80bf49
 
 
 
 
 
 
 
 
 
cf6bfde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d80bf49
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6bfde
 
 
 
 
 
 
 
 
 
 
 
 
d80bf49
 
 
 
 
 
 
 
 
 
cf6bfde
 
549f7f3
 
 
 
 
 
 
 
 
 
 
 
 
cf6bfde
549f7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf6bfde
 
549f7f3
 
 
cf6bfde
 
549f7f3
 
 
 
 
 
 
cf6bfde
 
 
 
 
 
 
549f7f3
cf6bfde
 
549f7f3
cf6bfde
549f7f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

import gradio as gr
from app import demo as app
import os

_docs = {'Rerun': {'description': 'Creates a Rerun viewer component that can be used to display the output of a Rerun stream.', 'members': {'__init__': {'value': {'type': 'list[pathlib.Path | str]\n    | pathlib.Path\n    | str\n    | bytes\n    | Callable\n    | None', 'default': 'None', 'description': 'Takes a singular or list of RRD resources. Each RRD can be a Path, a string containing a url, or a binary blob containing encoded RRD data. If callable, the function will be called whenever the app loads to set the initial value of the component.'}, 'label': {'type': 'str | None', 'default': 'None', 'description': 'The label for this component. Appears above the component and is also used as the header if there are a table of examples for this component. If None and used in a `gr.Interface`, the label will be the name of the parameter this component is assigned to.'}, 'every': {'type': 'float | None', 'default': 'None', 'description': "If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute."}, 'show_label': {'type': 'bool | None', 'default': 'None', 'description': 'if True, will display label.'}, 'container': {'type': 'bool', 'default': 'True', 'description': 'If True, will place the component in a container - providing some extra padding around the border.'}, 'scale': {'type': 'int | None', 'default': 'None', 'description': 'relative size compared to adjacent Components. For example if Components A and B are in a Row, and A has scale=2, and B has scale=1, A will be twice as wide as B. Should be an integer. scale applies in Rows, and to top-level Components in Blocks where fill_height=True.'}, 'min_width': {'type': 'int', 'default': '160', 'description': 'minimum pixel width, will wrap if not sufficient screen space to satisfy this value. If a certain scale value results in this Component being narrower than min_width, the min_width parameter will be respected first.'}, 'height': {'type': 'int | str', 'default': '640', 'description': 'height of component in pixels. If a string is provided, will be interpreted as a CSS value. If None, will be set to 640px.'}, 'visible': {'type': 'bool', 'default': 'True', 'description': 'If False, component will be hidden.'}, 'streaming': {'type': 'bool', 'default': 'False', 'description': 'If True, the data should be incrementally yielded from the source as `bytes` returned by calling `.read()` on an `rr.binary_stream()`'}, 'elem_id': {'type': 'str | None', 'default': 'None', 'description': 'An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'elem_classes': {'type': 'list[str] | str | None', 'default': 'None', 'description': 'An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.'}, 'render': {'type': 'bool', 'default': 'True', 'description': 'If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.'}, 'panel_states': {'type': 'dict[str, Any] | None', 'default': 'None', 'description': 'Force viewer panels to a specific state. Any panels set cannot be toggled by the user in the viewer. Panel names are "top", "blueprint", "selection", and "time". States are "hidden", "collapsed", and "expanded".'}}, 'postprocess': {'value': {'type': 'list[pathlib.Path | str] | pathlib.Path | str | bytes', 'description': 'Expects'}}, 'preprocess': {'return': {'type': 'RerunData | None', 'description': 'A RerunData object.'}, 'value': None}}, 'events': {}}, '__meta__': {'additional_interfaces': {'RerunData': {'source': 'class RerunData(GradioRootModel):\n    root: list[FileData | str]'}}, 'user_fn_refs': {'Rerun': ['RerunData']}}}

abs_path = os.path.join(os.path.dirname(__file__), "css.css")

with gr.Blocks(
    css=abs_path,
    theme=gr.themes.Default(
        font_mono=[
            gr.themes.GoogleFont("Inconsolata"),
            "monospace",
        ],
    ),
) as demo:
    gr.Markdown(
"""
# `gradio_rerun`

<div style="display: flex; gap: 7px;">
<a href="https://pypi.org/project/gradio_rerun/" target="_blank"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/gradio_rerun"></a> <a href="https://github.com/radames/gradio-rerun-viewer/issues" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/Issues-white?logo=github&logoColor=black"></a> 
</div>

Rerun viewer with Gradio
""", elem_classes=["md-custom"], header_links=True)
    app.render()
    gr.Markdown(
"""
## Installation

```bash
pip install gradio_rerun
```

## Usage

```python
import cv2
import os
import tempfile
import time

import gradio as gr
from gradio_rerun import Rerun

import rerun as rr
import rerun.blueprint as rrb

from color_grid import build_color_grid

# NOTE: Functions that work with Rerun should be decorated with `@rr.thread_local_stream`.
# This decorator creates a generator-aware thread-local context so that rerun log calls
# across multiple workers stay isolated.


# A task can directly log to a binary stream, which is routed to the embedded viewer.
# Incremental chunks are yielded to the viewer using `yield stream.read()`.
#
# This is the preferred way to work with Rerun in Gradio since your data can be immediately and
# incrementally seen by the viewer. Also, there are no ephemeral RRDs to cleanup or manage.
@rr.thread_local_stream("rerun_example_streaming_blur")
def streaming_repeated_blur(img):
    stream = rr.binary_stream()

    if img is None:
        raise gr.Error("Must provide an image to blur.")

    blueprint = rrb.Blueprint(
        rrb.Horizontal(
            rrb.Spatial2DView(origin="image/original"),
            rrb.Spatial2DView(origin="image/blurred"),
        ),
        collapse_panels=True,
    )

    rr.send_blueprint(blueprint)

    rr.set_time_sequence("iteration", 0)

    rr.log("image/original", rr.Image(img))
    yield stream.read()

    blur = img

    for i in range(100):
        rr.set_time_sequence("iteration", i)

        # Pretend blurring takes a while so we can see streaming in action.
        time.sleep(0.1)
        blur = cv2.GaussianBlur(blur, (5, 5), 0)

        rr.log("image/blurred", rr.Image(blur))

        # Each time we yield bytes from the stream back to Gradio, they
        # are incrementally sent to the viewer. Make sure to yield any time
        # you want the user to be able to see progress.
        yield stream.read()


# However, if you have a workflow that creates an RRD file instead, you can still send it
# directly to the viewer by simply returning the path to the RRD file.
#
# This may be helpful if you need to execute a helper tool written in C++ or Rust that can't
# be easily modified to stream data directly via Gradio.
#
# In this case you may want to clean up the RRD file after it's sent to the viewer so that you
# don't accumulate too many  temporary files.
@rr.thread_local_stream("rerun_example_cube_rrd")
def create_cube_rrd(x, y, z, pending_cleanup):
    cube = build_color_grid(int(x), int(y), int(z), twist=0)
    rr.log("cube", rr.Points3D(cube.positions, colors=cube.colors, radii=0.5))

    # We eventually want to clean up the RRD file after it's sent to the viewer, so tracking
    # any pending files to be cleaned up when the state is deleted.
    temp = tempfile.NamedTemporaryFile(prefix="cube_", suffix=".rrd", delete=False)
    pending_cleanup.append(temp.name)

    blueprint = rrb.Spatial3DView(origin="cube")
    rr.save(temp.name, default_blueprint=blueprint)

    # Just return the name of the file -- Gradio will convert it to a FileData object
    # and send it to the viewer.
    return temp.name


def cleanup_cube_rrds(pending_cleanup):
    for f in pending_cleanup:
        os.unlink(f)


with gr.Blocks() as demo:
    with gr.Tab("Streaming"):
        with gr.Row():
            img = gr.Image(interactive=True, label="Image")
            with gr.Column():
                stream_blur = gr.Button("Stream Repeated Blur")
        with gr.Row():
            viewer = Rerun(
                streaming=True,
                panel_states={
                    "time": "collapsed",
                    "blueprint": "hidden",
                    "selection": "hidden",
                },
            )
        stream_blur.click(streaming_repeated_blur, inputs=[img], outputs=[viewer])

    with gr.Tab("Dynamic RRD"):
        pending_cleanup = gr.State(
            [], time_to_live=10, delete_callback=cleanup_cube_rrds
        )
        with gr.Row():
            x_count = gr.Number(
                minimum=1, maximum=10, value=5, precision=0, label="X Count"
            )
            y_count = gr.Number(
                minimum=1, maximum=10, value=5, precision=0, label="Y Count"
            )
            z_count = gr.Number(
                minimum=1, maximum=10, value=5, precision=0, label="Z Count"
            )
        with gr.Row():
            create_rrd = gr.Button("Create RRD")
        with gr.Row():
            viewer = Rerun(
                streaming=True,
                panel_states={
                    "time": "collapsed",
                    "blueprint": "hidden",
                    "selection": "hidden",
                },
            )
        create_rrd.click(
            create_cube_rrd,
            inputs=[x_count, y_count, z_count, pending_cleanup],
            outputs=[viewer],
        )

    with gr.Tab("Hosted RRD"):
        with gr.Row():
            # It may be helpful to point the viewer to a hosted RRD file on another server.
            # If an RRD file is hosted via http, you can just return a URL to the file.
            choose_rrd = gr.Dropdown(
                label="RRD",
                choices=[
                    f"{rr.bindings.get_app_url()}/examples/arkit_scenes.rrd",
                    f"{rr.bindings.get_app_url()}/examples/dna.rrd",
                    f"{rr.bindings.get_app_url()}/examples/plots.rrd",
                ],
            )
        with gr.Row():
            viewer = Rerun(
                streaming=True,
                panel_states={
                    "time": "collapsed",
                    "blueprint": "hidden",
                    "selection": "hidden",
                },
            )
        choose_rrd.change(lambda x: x, inputs=[choose_rrd], outputs=[viewer])


if __name__ == "__main__":
    demo.launch()

```
""", elem_classes=["md-custom"], header_links=True)


    gr.Markdown("""
## `Rerun`

### Initialization
""", elem_classes=["md-custom"], header_links=True)

    gr.ParamViewer(value=_docs["Rerun"]["members"]["__init__"], linkify=['RerunData'])




    gr.Markdown("""

### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

- **As input:** Is passed, a RerunData object.
- **As output:** Should return, expects.

 ```python
def predict(
    value: RerunData | None
) -> list[pathlib.Path | str] | pathlib.Path | str | bytes:
    return value
```
""", elem_classes=["md-custom", "Rerun-user-fn"], header_links=True)




    code_RerunData = gr.Markdown("""
## `RerunData`
```python
class RerunData(GradioRootModel):
    root: list[FileData | str]
```""", elem_classes=["md-custom", "RerunData"], header_links=True)

    demo.load(None, js=r"""function() {
    const refs = {
            RerunData: [], };
    const user_fn_refs = {
          Rerun: ['RerunData'], };
    requestAnimationFrame(() => {

        Object.entries(user_fn_refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}-user-fn`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })

        Object.entries(refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })
    })
}

""")

demo.launch()