Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,410 Bytes
0ac8bb5 134c1b2 345aaf6 134c1b2 96b59b6 134c1b2 cf9fce4 134c1b2 832c70d 4c2de11 134c1b2 832c70d 134c1b2 4c2de11 137f187 fb3ffbe 8e8990a 134c1b2 ebdce90 134c1b2 56c7207 134c1b2 4c2de11 134c1b2 56c7207 d01359b 56c7207 134c1b2 e4a91d8 134c1b2 3d86fda 134c1b2 56c7207 134c1b2 56c7207 134c1b2 56c7207 134c1b2 56c7207 134c1b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import spaces
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
device = "cuda" if torch.cuda.is_available() else "cpu"
hf_token = os.getenv('HF_TOKEN')
if torch.cuda.is_available():
dtype = torch.float16
torch.cuda.empty_cache()
else:
dtype = torch.float32
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = pipeline = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", token=hf_token, torch_dtype=dtype)
pipe.load_lora_weights('aleksa-codes/flux-ghibsky-illustration', weight_name='lora.safetensors')
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = pipe.to(device)
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def infer(
prompt,
seed=42,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=3.5,
num_inference_steps=28,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt="GHIBSKY style, " + prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil",
good_vae=good_vae,
):
yield img, seed
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Flux Ghibsky Illustration: Create Serene and Enchanting Landscapes")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|