Spaces:
Sleeping
Sleeping
File size: 15,902 Bytes
526daeb eb9afcc 526daeb 24457db eb9afcc c54a7c8 24457db 526daeb eb9afcc 526daeb 1f20bab 021440c eb9afcc 021440c eb9afcc 021440c 526daeb 021440c eb9afcc 526daeb 021440c 526daeb 021440c 526daeb 94e90c1 526daeb 94e90c1 526daeb 021440c 526daeb eb9afcc 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 021440c 526daeb 24457db 526daeb eb9afcc 021440c eb9afcc 24457db eb9afcc 526daeb 1f20bab 526daeb eb9afcc 526daeb eb9afcc 526daeb 021440c 526daeb eb9afcc 526daeb 021440c eb9afcc 526daeb eb9afcc 526daeb eb9afcc 526daeb 021440c 526daeb 021440c 526daeb eb9afcc 526daeb eb9afcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import streamlit as st
import os
import requests
import re
from langchain_community.document_loaders import PyPDFLoader
from langchain.docstore.document import Document
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.prompts.prompt import PromptTemplate
from langchain_community.llms import LlamaCpp
from langchain.chains import RetrievalQA
from dotenv import load_dotenv
import google.generativeai as genai
# Loading Google Gemini
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
# Upload pdf file into 'pdf-data' folder if it does not exist
def fn_upload_pdf(mv_pdf_input_file, mv_processing_message):
"""Upload pdf file into 'pdf-data' folder if it does not exist"""
lv_file_name = mv_pdf_input_file.name
if not os.path.exists("pdf-data"):
os.makedirs("pdf-data")
lv_temp_file_path = os.path.join("pdf-data",lv_file_name)
if os.path.exists(lv_temp_file_path):
print("File already available")
fn_display_user_messages("File already available","Warning", mv_processing_message)
else:
with open(lv_temp_file_path,"wb") as lv_file:
lv_file.write(mv_pdf_input_file.getbuffer())
print("Step1: PDF uploaded successfully at -> " + lv_temp_file_path)
fn_display_user_messages("Step1: PDF uploaded successfully at -> " + lv_temp_file_path, "Info", mv_processing_message)
# Create Vector DB of uploaded PDF
def fn_create_vector_db(mv_pdf_input_file, mv_processing_message):
"""Create Vector DB of uploaded PDF"""
lv_file_name = mv_pdf_input_file.name[:-4] + ".vectorstore"
if not os.path.exists(os.path.join("vectordb","fiaas")):
os.makedirs(os.path.join("vectordb","fiaas"))
lv_temp_file_path = os.path.join(os.path.join("vectordb","fiaas"),lv_file_name)
lv_embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2",
model_kwargs={'device': 'cpu'}
)
if os.path.exists(lv_temp_file_path):
print("VectorDB already available for uploaded file")
fn_display_user_messages("VectorDB already available for uploaded file","Warning", mv_processing_message)
lv_vector_store = FAISS.load_local(lv_temp_file_path, lv_embeddings,allow_dangerous_deserialization=True)
return lv_vector_store
else:
lv_temp_pdf_file_path = os.path.join("pdf-data",mv_pdf_input_file.name)
# -- Loading PDF Data
lv_pdf_loader = PyPDFLoader(lv_temp_pdf_file_path)
lv_pdf_content = lv_pdf_loader.load()
# -- Define patterns with flexibility
pattern1 = r"(\w+)-\n(\w+)" # Match hyphenated words separated by a line break
pattern2 = r"(?<!\n\s)\n(?!\s\n)" # Match line breaks not surrounded by whitespace
pattern3 = r"\n\s*\n" # Match multiple line breaks with optional whitespace
lv_pdf_formatted_content = []
for lv_page in lv_pdf_content:
# -- Apply substitutions with flexibility
lv_pdf_page_content = re.sub(pattern1, r"\1\2", lv_page.page_content)
lv_pdf_page_content = re.sub(pattern2, " ", lv_pdf_page_content.strip())
lv_pdf_page_content = re.sub(pattern3, " ", lv_pdf_page_content)
lv_pdf_page_content = re.sub("\n", " ", lv_pdf_page_content)
lv_pdf_formatted_content.append(Document( page_content= lv_pdf_page_content,
metadata= lv_page.metadata)
)
# print("Page Details of "+str(lv_page.metadata)+" is - "+lv_pdf_page_content)
print("Step2: PDF content extracted")
fn_display_user_messages("Step2: PDF content extracted", "Info", mv_processing_message)
# -- Chunking PDF Data
lv_text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=300,
chunk_overlap=30,
length_function=len
)
lv_pdf_chunk_documents = lv_text_splitter.split_documents(lv_pdf_formatted_content)
print("Step3: PDF content chucked and document object created")
fn_display_user_messages("Step3: PDF content chucked and document object created", "Info", mv_processing_message)
# -- Creating FIASS Vector Store
lv_vector_store = FAISS.from_documents(lv_pdf_chunk_documents, lv_embeddings)
print("Step4: Vector store created")
fn_display_user_messages("Step4: Vector store created", "Info", mv_processing_message)
lv_vector_store.save_local(lv_temp_file_path)
return lv_vector_store
# Display user Error, Warning or Success Message
def fn_display_user_messages(lv_text, lv_type, mv_processing_message):
"""Display user Info, Error, Warning or Success Message"""
if lv_type == "Success":
with mv_processing_message.container():
st.success(lv_text)
elif lv_type == "Error":
with mv_processing_message.container():
st.error(lv_text)
elif lv_type == "Warning":
with mv_processing_message.container():
st.warning(lv_text)
else:
with mv_processing_message.container():
st.info(lv_text)
# Download TheBloke Models
def fn_download_llm_models(mv_selected_model, mv_processing_message):
"""Download TheBloke Models"""
lv_download_url = ""
print("Downloading TheBloke of "+mv_selected_model)
fn_display_user_messages("Downloading TheBloke of "+mv_selected_model, "Info", mv_processing_message)
if mv_selected_model == 'microsoft/phi-2':
lv_download_url = "https://huggingface.co/TheBloke/phi-2-GGUF/resolve/main/phi-2.Q2_K.gguf"
elif mv_selected_model == 'google/gemma-2b':
lv_download_url = "https://huggingface.co/MaziyarPanahi/gemma-2b-it-GGUF/resolve/main/gemma-2b-it.Q2_K.gguf"
elif mv_selected_model == 'mistralai/Mistral-7B-Instruct-v0.2':
lv_download_url = "https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q2_K.gguf"
if not os.path.exists("model"):
os.makedirs("model")
lv_filename = os.path.basename(lv_download_url)
lv_temp_file_path = os.path.join("model",lv_filename)
if os.path.exists(lv_temp_file_path):
print("Model already available")
fn_display_user_messages("Model already available","Warning", mv_processing_message)
else:
lv_response = requests.get(lv_download_url, stream=True)
if lv_response.status_code == 200:
with open(lv_temp_file_path, 'wb') as f:
for chunk in lv_response.iter_content(chunk_size=1024):
if chunk:
f.write(chunk)
print("Download completed")
fn_display_user_messages("Model download completed","Info", mv_processing_message)
else:
print(f"Model download completed {response.status_code}")
fn_display_user_messages(f"Model download completed {response.status_code}","Error", mv_processing_message)
# Function return QA Response using Vector Store
def fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message):
"""Returns QA Response using Vector Store"""
lv_model_path = ""
lv_model_type = ""
lv_template = """Instruction:
You are an AI assistant for answering questions about the provided context.
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
=======
{context}
=======
Question: {question}
Output:\n"""
lv_qa_prompt = PromptTemplate(
template=lv_template,
input_variables=["question", "context"]
)
if mv_selected_model == 'microsoft/phi-2':
lv_model_path = "model/phi-2.Q2_K.gguf"
lv_model_type = "pi"
elif mv_selected_model == 'google/gemma-2b':
lv_model_path = "model/gemma-2b-it.Q2_K.gguf"
lv_model_type = "gemma"
elif mv_selected_model == 'mistralai/Mistral-7B-Instruct-v0.2':
lv_model_path = "model/mistral-7b-instruct-v0.2.Q2_K.gguf"
lv_model_type = "mistral"
print("Step4: Generating LLM response")
fn_display_user_messages("Step4: Generating LLM response","Info", mv_processing_message)
lv_model = LlamaCpp(
model_path=lv_model_path,
temperature=0.00,
max_tokens=2048,
top_p=1,
n_ctx=2048,
verbose=False
)
lv_vector_search_result = lv_vector_store.similarity_search(mv_user_question, k=2)
# print("Vector Search Result - ")
# print(lv_vector_search_result)
# -- Creating formatted document result
lv_document_context = ""
lv_count = 0
for lv_result in lv_vector_search_result:
print("Concatenating Result of page - " + str(lv_count) + " with content of document page no - "+str(lv_result.metadata["page"]))
lv_document_context += lv_result.page_content
lv_count += 1
# print("Formatted Document Search Result - ")
# print(lv_document_context)
lv_qa_formatted_prompt = lv_qa_prompt.format(
question=mv_user_question,
context=lv_document_context
)
print("Formatted Prompt - " + lv_qa_formatted_prompt)
lv_llm_response = lv_model(lv_qa_formatted_prompt)
# print("LLM Response" +lv_llm_response)
print("Step5: LLM response generated")
fn_display_user_messages("Step5: LLM response generated","Info", mv_processing_message)
return lv_llm_response
# Function return API based QA Response using Vector Store
def fn_generate_API_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message):
"""Returns QA Response using Vector Store"""
lv_template = """Instruction:
You are an AI assistant for answering questions about the provided context.
You are given the following extracted parts of a long document and a question. Provide a detailed answer.
If you don't know the answer, just say "Hmm, I'm not sure." Don't try to make up an answer.
=======
{context}
=======
Question: {question}
Output:\n"""
lv_qa_prompt = PromptTemplate(
template=lv_template,
input_variables=["question", "context"]
)
lv_vector_search_result = lv_vector_store.similarity_search(mv_user_question, k=2)
# print("Vector Search Result - ")
# print(lv_vector_search_result)
# -- Creating formatted document result
lv_document_context = ""
lv_count = 0
for lv_result in lv_vector_search_result:
# print("Concatenating Result of page - " + str(lv_count) + " with content of document page no - "+str(lv_result.metadata["page"]))
lv_document_context += lv_result.page_content
lv_count += 1
print("Formatted Document Search Result - ")
print(lv_document_context)
lv_qa_formatted_prompt = lv_qa_prompt.format(
question=mv_user_question,
context=lv_document_context
)
if mv_selected_model == 'Google Gemini-pro':
lv_model = genai.GenerativeModel('gemini-pro')
print("Step4: Generating LLM response")
fn_display_user_messages("Step4: Generating LLM response","Info", mv_processing_message)
lv_llm_response = lv_model.generate_content(lv_qa_formatted_prompt).text
print("Step5: LLM response generated")
fn_display_user_messages("Step5: LLM response generated","Info", mv_processing_message)
return lv_llm_response
# Main Function
def main():
# -- Streamlit Settings
st.set_page_config(layout='wide')
col1, col2, col3 = st.columns(3)
col2.title("Chat with PDF")
st.text("")
# -- Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# -- Display Supported Models
col1, col2, col3 = st.columns(3)
mv_selected_model = col3.selectbox('Select Model',
[
'microsoft/phi-2',
'google/gemma-2b',
'mistralai/Mistral-7B-Instruct-v0.2',
'Google Gemini-pro'
]
)
# -- Display Supported Vector Stores
col1, col2, col3 = st.columns(3)
mv_selected_vector_db = col3.selectbox('Select Vector DB', ['FAISS'])
st.text("")
# -- Reading PDF File
col1, col2, col3 = st.columns(3)
mv_pdf_input_file = col2.file_uploader("Choose a PDF file:", type=["pdf"])
# -- Display Processing Details
st.text("")
col1, col2, col3 = st.columns(3)
mv_processing_message = col2.empty()
st.text("")
# -- Downloading Model Files
if mv_selected_model != "Google Gemini-pro":
fn_download_llm_models(mv_selected_model, mv_processing_message)
else:
print("Call Google API")
# -- Processing PDF
if (mv_pdf_input_file is not None):
# -- Upload PDF
fn_upload_pdf(mv_pdf_input_file, mv_processing_message)
# -- Create Vector Index
lv_vector_store = fn_create_vector_db(mv_pdf_input_file, mv_processing_message)
# -- Perform RAG
col1, col2, col3 = st.columns(3)
st.text("")
lv_chat_history = col2.chat_message
st.text("")
if mv_user_question := col2.chat_input("Chat on PDF Data"):
# -- Add user message to chat history
st.session_state.messages.append({"role": "user", "content": mv_user_question})
# -- Generating LLM response
if mv_selected_model != "Google Gemini-pro":
lv_response = fn_generate_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message)
else:
lv_response = fn_generate_API_QnA_response(mv_selected_model, mv_user_question, lv_vector_store, mv_processing_message)
# -- Adding assistant response to chat history
st.session_state.messages.append({"role": "assistant", "content": lv_response})
# -- Display chat messages from history on app rerun
for message in st.session_state.messages:
with lv_chat_history(message["role"]):
st.markdown(message["content"])
# -- Validate Data
# -- Get Web Response
# Calling Main Function
if __name__ == '__main__':
main() |