File size: 7,314 Bytes
8514027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from flask import Flask
from flask_restx import Api, Resource, fields
from werkzeug.datastructures import FileStorage
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import joblib
import streamlit as st
import pandas as pd
import requests
import threading
import json

app = Flask(__name__)
api = Api(app, version='1.0', title='Car Depreciation Model API',
          description='API for creating and testing car depreciation models')

model_ns = api.namespace('model', description='Model operations')
predict_ns = api.namespace('predict', description='Prediction operations')

# Define the expected input for file upload
upload_parser = api.parser()
upload_parser.add_argument('file', location='files', type=FileStorage, required=True)

# Define the expected input for prediction
input_model = api.model('PredictionInput', {
    'Car_Model': fields.String(required=True, description='Car model'),
    'Car_Year': fields.Integer(required=True, description='Year of the car'),
    'Assessment_Year': fields.Integer(required=True, description='Assessment year'),
    'Starting_Asset_Value': fields.Float(required=True, description='Starting asset value'),
    'Book_Residual_Value': fields.Float(required=True, description='Book residual value'),
    'Market_Value': fields.Float(required=True, description='Market value')
})

# Global variable to store the model
global_model = None

@model_ns.route('/create')
@api.expect(upload_parser)
class ModelCreation(Resource):
    @api.doc(description='Create a new model from CSV data')
    @api.response(200, 'Model created successfully')
    @api.response(400, 'Invalid input')
    def post(self):
        global global_model
        args = upload_parser.parse_args()
        uploaded_file = args['file']
        
        if uploaded_file and uploaded_file.filename.endswith('.csv'):
            # Read the CSV file
            data = pd.read_csv(uploaded_file)
            
            # Prepare features and target
            X = data.drop('Depreciation_Percent', axis=1)
            y = data['Depreciation_Percent']
            
            # Split the data into training and testing sets
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            
            # Create preprocessing steps
            numeric_features = ['Car_Year', 'Assessment_Year', 'Starting_Asset_Value', 'Book_Residual_Value', 'Market_Value']
            categorical_features = ['Car_Model']
            
            numeric_transformer = SimpleImputer(strategy='median')
            categorical_transformer = Pipeline(steps=[
                ('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
                ('onehot', OneHotEncoder(handle_unknown='ignore'))
            ])
            
            preprocessor = ColumnTransformer(
                transformers=[
                    ('num', numeric_transformer, numeric_features),
                    ('cat', categorical_transformer, categorical_features)
                ])
            
            # Create a pipeline with preprocessor and model
            model = Pipeline(steps=[('preprocessor', preprocessor),
                                    ('regressor', LinearRegression())])
            
            # Fit the model
            model.fit(X_train, y_train)
            
            # Make predictions on the test set
            y_pred = model.predict(X_test)
            
            # Evaluate the model
            mse = mean_squared_error(y_test, y_pred)
            r2 = r2_score(y_test, y_pred)
            
            # Save the model
            joblib.dump(model, 'output/car_depreciation_model.joblib')
            global_model = model
            
            return {
                'message': 'Model created and saved successfully',
                'mse': float(mse),
                'r2': float(r2)
            }, 200
        
        return {'error': 'Invalid file format'}, 400

@predict_ns.route('/')
class Prediction(Resource):
    @api.expect(input_model)
    @api.doc(description='Predict car depreciation')
    @api.response(200, 'Successful prediction')
    @api.response(400, 'Invalid input')
    @api.response(404, 'Model not found')
    def post(self):
        global global_model
        try:
            if global_model is None:
                try:
                    global_model = joblib.load('output/car_depreciation_model.joblib')
                except FileNotFoundError:
                    return {'error': 'Model not found. Please create a model first.'}, 404
            
            # Get JSON data from the request
            data = api.payload
            
            # Convert JSON to DataFrame
            new_data_df = pd.DataFrame([data])
            
            # Make prediction
            prediction = global_model.predict(new_data_df)
            
            return {
                'predicted_depreciation': float(prediction[0])
            }, 200
        
        except Exception as e:
            return {'error': str(e)}, 400


API_URL = "http://localhost:5000"
st.title('Car Depreciation Predictor')

# Input form for prediction
st.header('Predict Depreciation')
car_model = st.text_input('Car Model',value="Honda Civic")
car_year = st.number_input('Car Year', value=2022)
assessment_year = st.number_input('Assessment Year', min_value=1, max_value=5, value=1)
starting_asset_value = st.number_input('Starting Asset Value', min_value=0, value=20000)
book_residual_value = st.number_input('Book Residual Value', min_value=0, value=18000)
market_value = st.number_input('Market Value', min_value=0, value=19000)

if st.button('Predict'):
    input_data = {
        'Car_Model': car_model,
        'Car_Year': int(car_year),
        'Assessment_Year': int(assessment_year),
        'Starting_Asset_Value': float(starting_asset_value),
        'Book_Residual_Value': float(book_residual_value),
        'Market_Value': float(market_value)
    }
    
    response = requests.post(f'{API_URL}/predict/', json=input_data)
    if response.status_code == 200:
        prediction = response.json()['predicted_depreciation']
        st.success(f'Predicted Depreciation: {prediction:.2f}%')
    elif response.status_code == 404:
        st.error('Model not found. Please create a model first.')
    else:
        st.error(f'Error making prediction: {response.json().get("error", "Unknown error")}')

if __name__ == '__main__':
    try:
        # Start Flask in a separate thread
        threading.Thread(target=lambda: app.run(debug=False, use_reloader=False)).start()

        # Run Streamlit
        import streamlit.web.cli as stcli
        import sys
        
        sys.argv = ["streamlit", "run", __file__]
        sys.exit(stcli.main())
    except:
        print("An exception occurred")