File size: 3,869 Bytes
af779a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Similarity Score\n",
"This Notebook imports the questions and answers from the QuestionGeneration.ipynb output and scores the similarity\n",
"\n",
"Heavy inspiration taken from:\n",
"\n",
"https://github.com/karndeepsingh/sentence_similarity/blob/main/Finding_Similar_Sentence.ipynb"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import packages"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from sklearn.metrics.pairwise import cosine_similarity\n",
"import numpy as np\n",
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load the model\n",
"Uncomment to store the model locally for easy retrieval, but delete the model before uploading to GitHub as too large"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"model = SentenceTransformer('nli-distilroberta-base-v2')\n",
"# model.save(\"./Model/model\")\n",
"# model = SentenceTransformer(\"./Model/model\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load in the questions and responses"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"Data = pd.read_csv(\"./Results/Compare.csv\", index_col=0)\n",
"questions = Data.index.values\n",
"company = Data['Company'].values\n",
"gold = Data['Meta'].values\n",
"sentences = np.concatenate((company, gold))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Create the sentence embeddings and obtain scores"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"sentence_embeddings = model.encode(sentences)\n",
"similarity_score = []\n",
"for i in range(len(company)):\n",
" similarity_score.append(cosine_similarity(\n",
" [sentence_embeddings[i]],\n",
" [sentence_embeddings[len(company) + i]]\n",
" ).flatten()[0])\n",
"Similarity = pd.DataFrame({'Score': similarity_score}, index=questions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Print a few of the scores"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Score\n",
"What is the file name of the document? 0.858884\n",
"When was the document last modified? 0.565336\n",
"What is the file path of the document? 0.755018\n",
"When was the document last accessed? 0.553015\n",
"What is the creation date of the document? 0.849555\n"
]
}
],
"source": [
"print(Similarity.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save the scores to a .csv file"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"Similarity.to_csv('./Results/Similarity_Scores.csv')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "docu_compare",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|