Spaces:
Running
Running
File size: 2,223 Bytes
3a664f3 fdd262f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import torch
import torchvision
import pickle
import gradio as gr
from timeit import default_timer as timer
# device-agnostic code
device = "cuda" if torch.cuda.is_available() else "cpu"
# Create the model
model = pickle.load(open("model.pkl", "rb"))
model.to(device)
model.eval()
next(iter(model.parameters())).to(device)
# Transform for prediction
transform = torchvision.models.EfficientNet_B2_Weights.DEFAULT.transforms()
# class_names
# Open Food101 class names file and read each line into a list
with open("class_names.txt", "r") as f:
class_names = [food.strip() for food in f.readlines()]
# example_list
example_list = [["example/pizza.jpg"],
["example/ice_cream.jpg"],
["example/pancakes.jpg"],
["example/steak.jpg"],
["example/hot_dog.jpg"]]
def predict(img):
"""Predict the class of image
Args:
img: input image vector
Results:
a tuple of dictionary and float
Predictions,Prediction_time=predict(img=img_vector)
"""
start_time = timer()
with torch.inference_mode():
t_img = transform(img).unsqueeze(0).to(device)
# print(t_img)
probs = torch.softmax(model(t_img), dim=1).to("cpu")
end_time = timer()
label_and_prob = {class_names[i]: float(probs[0][i]) for i in range(len(class_names))}
# print(probs)
return label_and_prob, round(end_time - start_time, 4)
# Create title, description strings
title = "FoodVision ππ₯©π£"
description = "An EfficientNetB2 fine tuning computer vision model to classify 101 different food images."
# Create the Gradio demo
demo = gr.Interface(fn=predict, # mapping function from input to output
inputs=gr.Image(type="pil"), # what are the inputs?
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
gr.Number(label="Prediction time(s)")],
# our fn has two outputs, therefore we have two outputs
examples=example_list,
title=title,
description=description)
# article=article)
demo.launch(debug=False) # print errors locally? |