File size: 4,146 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn as nn
import torch.nn.functional as F


class PreEmphasis(torch.nn.Module):
    def __init__(self, coef: float = 0.97) -> None:
        super().__init__()
        self.coef = coef
        # make kernel
        # In pytorch, the convolution operation uses cross-correlation. So, filter is flipped.
        self.register_buffer(
            "flipped_filter",
            torch.FloatTensor([-self.coef, 1.0]).unsqueeze(0).unsqueeze(0),
        )

    def forward(self, input: torch.tensor) -> torch.tensor:
        assert (
            len(input.size()) == 2
        ), "The number of dimensions of input tensor must be 2!"
        # reflect padding to match lengths of in/out
        input = input.unsqueeze(1)
        input = F.pad(input, (1, 0), "reflect")
        return F.conv1d(input, self.flipped_filter)


class AFMS(nn.Module):
    """

    Alpha-Feature map scaling, added to the output of each residual block[1,2].



    Reference:

    [1] RawNet2 : https://www.isca-speech.org/archive/Interspeech_2020/pdfs/1011.pdf

    [2] AMFS    : https://www.koreascience.or.kr/article/JAKO202029757857763.page

    """

    def __init__(self, nb_dim: int) -> None:
        super().__init__()
        self.alpha = nn.Parameter(torch.ones((nb_dim, 1)))
        self.fc = nn.Linear(nb_dim, nb_dim)
        self.sig = nn.Sigmoid()

    def forward(self, x):
        y = F.adaptive_avg_pool1d(x, 1).view(x.size(0), -1)
        y = self.sig(self.fc(y)).view(x.size(0), x.size(1), -1)

        x = x + self.alpha
        x = x * y
        return x


class Bottle2neck(nn.Module):
    def __init__(

        self,

        inplanes,

        planes,

        kernel_size=None,

        dilation=None,

        scale=4,

        pool=False,

    ):
        super().__init__()

        width = int(math.floor(planes / scale))

        self.conv1 = nn.Conv1d(inplanes, width * scale, kernel_size=1)
        self.bn1 = nn.BatchNorm1d(width * scale)

        self.nums = scale - 1

        convs = []
        bns = []

        num_pad = math.floor(kernel_size / 2) * dilation

        for i in range(self.nums):
            convs.append(
                nn.Conv1d(
                    width,
                    width,
                    kernel_size=kernel_size,
                    dilation=dilation,
                    padding=num_pad,
                )
            )
            bns.append(nn.BatchNorm1d(width))

        self.convs = nn.ModuleList(convs)
        self.bns = nn.ModuleList(bns)

        self.conv3 = nn.Conv1d(width * scale, planes, kernel_size=1)
        self.bn3 = nn.BatchNorm1d(planes)

        self.relu = nn.ReLU()

        self.width = width

        self.mp = nn.MaxPool1d(pool) if pool else False
        self.afms = AFMS(planes)

        if inplanes != planes:  # if change in number of filters
            self.residual = nn.Sequential(
                nn.Conv1d(inplanes, planes, kernel_size=1, stride=1, bias=False)
            )
        else:
            self.residual = nn.Identity()

    def forward(self, x):
        residual = self.residual(x)

        out = self.conv1(x)
        out = self.relu(out)
        out = self.bn1(out)

        spx = torch.split(out, self.width, 1)
        for i in range(self.nums):
            if i == 0:
                sp = spx[i]
            else:
                sp = sp + spx[i]
            sp = self.convs[i](sp)
            sp = self.relu(sp)
            sp = self.bns[i](sp)
            if i == 0:
                out = sp
            else:
                out = torch.cat((out, sp), 1)

        out = torch.cat((out, spx[self.nums]), 1)

        out = self.conv3(out)
        out = self.relu(out)
        out = self.bn3(out)

        out += residual
        if self.mp:
            out = self.mp(out)
        out = self.afms(out)

        return out