File size: 7,329 Bytes
c968fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# This code is modified from https://github.com/descriptinc/descript-audio-codec/blob/main/dac/model/discriminator.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from audiotools import AudioSignal
from audiotools import ml
from audiotools import STFTParams
from einops import rearrange
from torch.nn.utils import weight_norm


def WNConv1d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv1d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


def WNConv2d(*args, **kwargs):
    act = kwargs.pop("act", True)
    conv = weight_norm(nn.Conv2d(*args, **kwargs))
    if not act:
        return conv
    return nn.Sequential(conv, nn.LeakyReLU(0.1))


class MPD(nn.Module):
    def __init__(self, period):
        super().__init__()
        self.period = period
        self.convs = nn.ModuleList(
            [
                WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)),
                WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)),
                WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)),
                WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)),
                WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)),
            ]
        )
        self.conv_post = WNConv2d(
            1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False
        )

    def pad_to_period(self, x):
        t = x.shape[-1]
        x = F.pad(x, (0, self.period - t % self.period), mode="reflect")
        return x

    def forward(self, x):
        fmap = []

        x = self.pad_to_period(x)
        x = rearrange(x, "b c (l p) -> b c l p", p=self.period)

        for layer in self.convs:
            x = layer(x)
            fmap.append(x)

        x = self.conv_post(x)
        fmap.append(x)

        return fmap


class MSD(nn.Module):
    def __init__(self, rate: int = 1, sample_rate: int = 44100):
        super().__init__()
        self.convs = nn.ModuleList(
            [
                WNConv1d(1, 16, 15, 1, padding=7),
                WNConv1d(16, 64, 41, 4, groups=4, padding=20),
                WNConv1d(64, 256, 41, 4, groups=16, padding=20),
                WNConv1d(256, 1024, 41, 4, groups=64, padding=20),
                WNConv1d(1024, 1024, 41, 4, groups=256, padding=20),
                WNConv1d(1024, 1024, 5, 1, padding=2),
            ]
        )
        self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False)
        self.sample_rate = sample_rate
        self.rate = rate

    def forward(self, x):
        x = AudioSignal(x, self.sample_rate)
        x.resample(self.sample_rate // self.rate)
        x = x.audio_data

        fmap = []

        for l in self.convs:
            x = l(x)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)

        return fmap


BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)]


class MRD(nn.Module):
    def __init__(
        self,
        window_length: int,
        hop_factor: float = 0.25,
        sample_rate: int = 44100,
        bands: list = BANDS,
    ):
        """Complex multi-band spectrogram discriminator.
        Parameters
        ----------
        window_length : int
            Window length of STFT.
        hop_factor : float, optional
            Hop factor of the STFT, defaults to ``0.25 * window_length``.
        sample_rate : int, optional
            Sampling rate of audio in Hz, by default 44100
        bands : list, optional
            Bands to run discriminator over.
        """
        super().__init__()

        self.window_length = window_length
        self.hop_factor = hop_factor
        self.sample_rate = sample_rate
        self.stft_params = STFTParams(
            window_length=window_length,
            hop_length=int(window_length * hop_factor),
            match_stride=True,
        )

        n_fft = window_length // 2 + 1
        bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands]
        self.bands = bands

        ch = 32
        convs = lambda: nn.ModuleList(
            [
                WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)),
                WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
                WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
                WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)),
                WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)),
            ]
        )
        self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))])
        self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False)

    def spectrogram(self, x):
        x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params)
        x = torch.view_as_real(x.stft())
        x = rearrange(x, "b 1 f t c -> (b 1) c t f")
        # Split into bands
        x_bands = [x[..., b[0] : b[1]] for b in self.bands]
        return x_bands

    def forward(self, x):
        x_bands = self.spectrogram(x)
        fmap = []

        x = []
        for band, stack in zip(x_bands, self.band_convs):
            for layer in stack:
                band = layer(band)
                fmap.append(band)
            x.append(band)

        x = torch.cat(x, dim=-1)
        x = self.conv_post(x)
        fmap.append(x)

        return fmap


class Discriminator(nn.Module):
    def __init__(
        self,
        rates: list = [],
        periods: list = [2, 3, 5, 7, 11],
        fft_sizes: list = [2048, 1024, 512],
        sample_rate: int = 44100,
        bands: list = BANDS,
    ):
        """Discriminator that combines multiple discriminators.

        Parameters
        ----------
        rates : list, optional
            sampling rates (in Hz) to run MSD at, by default []
            If empty, MSD is not used.
        periods : list, optional
            periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11]
        fft_sizes : list, optional
            Window sizes of the FFT to run MRD at, by default [2048, 1024, 512]
        sample_rate : int, optional
            Sampling rate of audio in Hz, by default 44100
        bands : list, optional
            Bands to run MRD at, by default `BANDS`
        """
        super().__init__()
        discs = []
        discs += [MPD(p) for p in periods]
        discs += [MSD(r, sample_rate=sample_rate) for r in rates]
        discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes]
        self.discriminators = nn.ModuleList(discs)

    def preprocess(self, y):
        # Remove DC offset
        y = y - y.mean(dim=-1, keepdims=True)
        # Peak normalize the volume of input audio
        y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9)
        return y

    def forward(self, x):
        x = self.preprocess(x)
        fmaps = [d(x) for d in self.discriminators]
        return fmaps


if __name__ == "__main__":
    disc = Discriminator()
    x = torch.zeros(1, 1, 44100)
    results = disc(x)
    for i, result in enumerate(results):
        print(f"disc{i}")
        for i, r in enumerate(result):
            print(r.shape, r.mean(), r.min(), r.max())
        print()